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Precise numerical simulations are needed to determine the spectral 
shape of the GW signal





ℒ =
(∂χ)2

2
− (M2 − μ2(t, x)) ⋅ χ2

2
−

λχ4

4

Inverse Phase Transition

Babichev, Gorbunov, Ramazanov(2020)



ℒ =
(∂χ)2

2
− (M2 − μ2(t, x)) ⋅ χ2

2
−

λχ4

4

Inverse Phase Transition

Babichev, Gorbunov, Ramazanov(2020)

μ > M



ℒ =
(∂χ)2

2
− (M2 − μ2(t, x)) ⋅ χ2

2
−

λχ4

4

Inverse Phase Transition

Babichev, Gorbunov, Ramazanov(2020)

χmin (t) =
μ2 (t) − M2

λ

−χmin +χmin

μ > M



ℒ =
(∂χ)2

2
− (M2 − μ2(t, x)) ⋅ χ2

2
−

λχ4

4

Inverse Phase Transition

Babichev, Gorbunov, Ramazanov(2020)

χmin (t) =
μ2 (t) − M2

λ

−χmin +χmin

μ < Mμ > M



ℒ =
(∂χ)2

2
− (M2 − μ2(t, x)) ⋅ χ2

2
−

λχ4

4

Inverse Phase Transition

Babichev, Gorbunov, Ramazanov(2020)

χmin (t) =
μ2 (t) − M2

λ

−χmin +χmin

μ < Mμ > M



ℒ =
(∂χ)2

2
− (M2 − μ2(t, x)) ⋅ χ2

2
−

λχ4

4

Inverse Phase Transition

Babichev, Gorbunov, Ramazanov(2020)

Early Universe 
 spontaneously Broken Phase

χmin (t) =
μ2 (t) − M2

λ

−χmin +χmin

μ < Mμ > M



ℒ =
(∂χ)2

2
− (M2 − μ2(t, x)) ⋅ χ2

2
−

λχ4

4

Inverse Phase Transition

Babichev, Gorbunov, Ramazanov(2020)

Tachyonic mass   
slowly decreases / 

redshifts 
due to cosmological 

expansion

μ(t)

Early Universe 
 spontaneously Broken Phase

χmin (t) =
μ2 (t) − M2

λ

−χmin +χmin

μ < Mμ > M



ℒ =
(∂χ)2

2
− (M2 − μ2(t, x)) ⋅ χ2

2
−

λχ4

4

Inverse Phase Transition

Babichev, Gorbunov, Ramazanov(2020)

Late Universe  

Tachyonic mass   
slowly decreases / 

redshifts 
due to cosmological 

expansion

μ(t)

Early Universe 
 spontaneously Broken Phase

χmin (t) =
μ2 (t) − M2

λ

−χmin +χmin

μ < Mμ > M



ℒ =
(∂χ)2

2
− (M2 − μ2(t, x)) ⋅ χ2

2
−

λχ4

4

Inverse Phase Transition

Babichev, Gorbunov, Ramazanov(2020)

Late Universe  

Tachyonic mass   
slowly decreases / 

redshifts 
due to cosmological 

expansion

μ(t)

Early Universe 
 spontaneously Broken Phase

χmin (t) =
μ2 (t) − M2

λ

−χmin +χmin

μ < Mμ > M

flipped time order



ℒ =
(∂χ)2

2
− (M2 − μ2(t, x)) ⋅ χ2

2
−

λχ4

4

Inverse Phase Transition

Babichev, Gorbunov, Ramazanov(2020)

Late Universe  

Tachyonic mass   
slowly decreases / 

redshifts 
due to cosmological 

expansion

μ(t)

Early Universe 
 spontaneously Broken Phase

χmin (t) =
μ2 (t) − M2

λ

−χmin +χmin

μ < Mμ > M

H < M
for Hubble parameter

flipped time order



ℒ =
(∂χ)2

2
− (M2 − μ2(t, x)) ⋅ χ2

2
−

λχ4

4

Inverse Phase Transition

Babichev, Gorbunov, Ramazanov(2020)

Late Universe  

Tachyonic mass   
slowly decreases / 

redshifts 
due to cosmological 

expansion

μ(t)

Early Universe 
 spontaneously Broken Phase
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oscillations around restored symmetric vacuum
flipped time order
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Tracing the vacuum

M2
eff (t) = 2 ⋅ (μ2(t) − M2)In the minimum

Adiabaticity is definitely violated when   i.e. when  ! Meff = 0 μ* ≃ M

At this point one cannot trace the minimum as    diverges! ·χmin =
μ ·μ

λ (μ2 (t) − M2)
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μ* ≃ MInverse phase transition time 

Temperature at inverse phase transition

T* =
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equality time ρχ = εrad (Teq) =
π2g* (Teq)

30
T4

eq

sa3 = const s =
2π2g* (T ) T3

45
from entropy conservation where

( a*

aeq )
3

=
g* (Teq) T3

eq

g* (T*) T3
*

ρχ = (4M10H2
*)1/3
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3

= εrad (Teq)

which one uses in 

to obtain  M
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MPl
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To avoid too much friction
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Thanks a lot for attention! 


