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Precise numerical simulations are needed to determine the spectral 
shape of the GW signal
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Early Universe 
 spontaneously Broken Phase

χmin (t) =
μ2 (t) − M2

λ

−χmin +χmin

μ < Mμ > M

H < M
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oscillations around restored symmetric vacuum
flipped time order
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Tracing the vacuum

M2
eff (t) = 2 ⋅ (μ2(t) − M2)In the minimum

Adiabaticity is definitely violated when   i.e. when  ! Meff = 0 μ* ≃ M

At this point one cannot trace the minimum as    diverges! ·χmin =
μ ·μ

λ (μ2 (t) − M2)
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μ* ≃ MInverse phase transition time 

Temperature at inverse phase transition

T* =
M
g

12
N
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equality time ρχ = εrad (Teq) =
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sa3 = const s =
2π2g* (T ) T3

45
from entropy conservation where
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3
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eq
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ρχ = (4M10H2
*)1/3

4λ ( a*

aeq )
3

= εrad (Teq)

which one uses in 

to obtain  M
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Domain Walls!

Ti ≃ g
N

g*(Ti)
MPl

μ ≃ Hi

To avoid too much friction
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works well for domain wall network!!!

P ∼ ···Q2
ij /M2
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Thanks a lot for attention! 


