## Search for dark matter and precision Higgs measurements at Future Lepton Colliders

Presented By:

Yehia Mahmoud

### **Contents**

- Particle accelerators of the future
- Lepton Collider Physics
- Lepton portal dark matter (LPDM)
- Search for dark matter at ILC
- Precision Higgs at lepton colliders
- Measurement of Higgs production cross section at FCC-ee
- Summary

### **Future Particle Accelerators**

- After Higgs discovery in 2012, No new physics discovered.
- New Particle colliders are designed for higher center of mass energy, luminosity and precision.
- Future hadron colliders: HL-LHC, FCC-hh.
- Future electron-positron colliders: FCC-ee, ILC, CLIC CEPC.
- Future electron-hadron colliders: FCC-eh.
- Future Muon colliders are also proposed.
- Monte Carlo studies on these future projects are ongoing.





### **Lepton Collider Physics**

- Electrons are point-like, initial state is known.
- Clean environment, no QCD background.
- Ideal for precision measurements but can also be used for searches of new physics
- International Linear Collider (ILC) designed to operate at √s = 250,350 and 500 GeV and possible upgrade to 1 TeV
- Expected to deliver L=2ab<sup>-1</sup> at 250 GeV and 4ab<sup>-1</sup> at 500 GeV and 200 fb<sup>-1</sup> at 350 GeV
- Future Circular Collider (FCC-ee) designed to operate at √s = 240, 350 GeV with L=10.8 and 3 ab<sup>-1</sup> respectively



- BSM theory where Dark Matter is a singlet scalar under SM.
- Interacts with SM through yukawa couplings with new extra leptons: Vector-Like Leptons (L).
- VLLs are particles whose left- and right-handed components transform the same way under SU(2).
- VLLs can explain many BSM problems like the discrepancy between the measured and predicted muon g-2 and the mass hierarchy between different generations.
- Lagrangian:

 $-\mathcal{L} = M_L \bar{L}_L L_R + \lambda_L^i X \bar{\ell}_{L_i} L_R.$ 

- VLLs can be pair produced at electron-positron colliders in two ways: s-channel and t-channel exchange.
- The s-channel contribution is mediated by Z/y, while the tchannel is mediated by X.



- Contribution for t-channel is significant only for large Yukawa coupling.
- Vector-Like leptons can decay into DM x and SM charged lepton with a branching ratio of unity.
- As a result, production rate is not affected by Mχ, except for the tchannel case where the process is mediated by χ.
- We study the case were the SM charged lepton is an electron (Electrophilic case).
- Cases where the SM charged particle is Muon or Tauon would yield similar results .
- Free Parameters: Yukawa coupling  $\lambda_{L}^{i}$  Mass of scalar DM M<sub>X</sub> Mass of vector-like lepton M<sub>L</sub>.
- Final state: Dilelectron + Missing transverse momentum
- Generate electron-positron collisions with beam energy of 250 GeV using WHIZARD, showering and hadronization with PYTHIA6 and fast simulation of International Large Detector (ILD) at ILC with DELPHES



- Samples were generated for different masses of L and  $\chi$  and a coupling  $\lambda^i{}_L$  of 0.1 and 1.
- We studied the conservative case of  $\lambda_{L}^{i} = 0.1$ .
- Three cases of the mass splitting  $\Delta M = M_L M_X$  were considered:
  - Wide mass splitting:  $\Delta M = 100 \text{ GeV}$
  - Mass splitting of  $\Delta M = 10 \text{ GeV}$
  - Narrow mass splitting  $\Delta M = 5 \text{ GeV}$
- Selecting events two oppositely charged electrons and missing E<sub>T</sub>.
- Pseudorapidity of the leading electron

 $|\eta_1^e| < 0.7$ 

• Relative difference between dielectron  $p_T^{ee}$  and missing transverse energy  $E_T^{miss}$ 

$$\frac{|p_T^{ee} - E_T^{miss}|}{p_T^{ee}} < 0.2$$

• Delta R between the dielectron:

$$\Delta R^{ee} < 3.2$$

• Cuts were successful In rejecting most of the background.





- Samples were generated for different masses of L and  $\chi$  and a coupling  $\lambda^i_L$  of 0.1 and 1.
- We studied the conservative case of  $\lambda_{L}^{i} = 0.1$ .
- Three cases of the mass splitting  $\Delta M = M_L M_X$  were considered:
  - Wide mass splitting:  $\Delta M = 100 \text{ GeV}$
  - Mass splitting of  $\Delta M = 10 \text{ GeV}$
  - Narrow mass splitting  $\Delta M = 5 \text{ GeV}$
- Selecting events two oppositely charged electrons and missing E<sub>T</sub>.
- Pseudorapidity of the leading electron

 $|\eta_1^e| < 0.7$ 

• Relative difference between dielectron  $p_T^{ee}$  and missing transverse energy  $E_T^{miss}$ 

$$\frac{|p_T^{ee} - E_T^{miss}|}{p_T^{ee}} < 0.2$$

• Delta R between the dielectron:

$$\Delta R^{ee} < 3.2$$

• Cuts were successful In rejecting most of the background.





#### **Results and Conclusion**

- Study was concluded for an integrated luminosity of 1000 fb<sup>-1</sup>.
- In case of no discovery, an exclusion limit on the model parameters at 95% CL is computed.
- A statistical test was performed based on the likelihood ratio test statistic.
- For the case of the wide mass splitting ,  $\Delta M = 100 \text{ GeV}$  it is possible to exclude the whole parameter space. While for the case of  $\Delta M = 10 \text{ GeV}$ , it is possible to exclude  $M_L$  up to 180 GeV and the narrow mass splitting  $\Delta M = 5 \text{ GeV}$  up to 100 GeV.
- Degenrate case of  $\Delta M < 100 \text{ GeV}$  not accessible by LHC!

#### • Publication:

Y.Mahmoud, J.Kawamura, M.T.Hussein, and S.Elgammal "Investigating vector-like leptons decaying into an electron and missing transverse energy in  $e^+e^-$  collisions with  $\sqrt{s} = 500$  GeV at the ILC", JHEP03(2025)001





Y.Mahmoud et.al JHEP03(2025)001

### **Precision Higgs at FCC-ee**

- Measurement of Higgs boson properties with high precision
- Constraints contribution from BSM physics
- **Higgs physics at LHC:** Large center of mass energy but weak statistics due to very large hadronic background
- LHC has a limited reach on Higgs physics even for high luminosity upgrade.
- Lepton colliders offer a promising and unique ways of Higgs measurements due its clean background and known initial state
- Higgs production at lepton colliders proceeds in two mechanisms: Higgstrahlung (e- e+ → ZH) and Vector boson fusion (e- e+ → Hvv)
- FCC-ee is expected to work as a Higgs factory at √s = 240 GeV with ≈ 2 million Higgs from ZH production
- Absolute measurement of the total ZH production cross section  $\sigma_{HZZ}$  is allowed in a model independent way without knowledge of any specific decay of the Higgs





### **Precision Higgs at FCC-ee**

 $\boldsymbol{\eta}$ 

- Since initial state is known, Higgs boson can be reconstructed as a recoil particle.
- For example, in the case where  $Z \rightarrow II$ , the recoil mass is given by:

$$a_{recoil}^2 = s + m_{ll}^2 - 2\sqrt{s} E_{ll}$$

- This method, known as "Recoil mass" is unique only to lepton colliders !
- Measurment of  $\sigma_{HZZ}$  allows for direct measurement of  ${f g}_{HZZ}$  since  $\sigma_{HZZ} \propto g_{HZZ}^2$
- Recoil mass peak gives an accurate measurement of the Higgs mass.
- Measurment of g<sub>HZZ</sub> gives access to all other SM Higgs couplings

$$\sigma_{HZZ} \times \mathcal{B}(H \to XX) \propto \frac{\sigma_{HZZ} \times g_{HXX}^2}{\Gamma_H}$$

 Total width of the Higgs boson can be determined from the measurement of Higgs → ZZ\* decays

$$\sigma_{HZZ} \times \mathcal{B}(H \to ZZ^*) \propto \frac{\sigma_{HZZ}^2}{\Gamma_H}$$





## **Precision Higgs at FCC-ee**

- We performed a study on the final state of  $H \rightarrow ZZ^* \rightarrow 4l$
- Cases with 4l = 4e,4µ,2e2µ were considered
- Cases with ZH where Z decays to dijet or invisible states.
- Expected Background: ZZ, Zqq, Z(ll) H(jj), Z(jj) H(ll), ZH(Za), ZH(WW)
- Centrally produced Winter 2023 samples at √s = 240 GeV generated with Delphes
- Lepton selection criteria:
  - First pair of leptons (From On-shell Z)
    - Oppositely charged leptons
    - The pair which minimises  $|M_{ll} M_Z|$
  - Second Pair of leptons (From Off-shell Z)
    - Oppositely charged leptons
    - Highest momentum oppositely charged pair of the remaining
  - Additional cut for 2e2µ: M<sub>II</sub> (On-Shell) > 60 GeV.
     This is to remove contribution from Off-Shell Z leptons.





#### **Analysis Strategy**

- Rectangular cuts were applied to to discriminate the signal from the background
- Most dominant background is ZZ
- Signal is characterized by a resonance in the 4-lepton invariant mass distribution corresponding to 125 GeV (Higgs mass)
- Z(jj)H(4l) signal is characterized by additional energy above the 4-lepton energy (ZZ can have only 4leptons)
- Z(vv)H(jj) signal is characterized by large missing momentum

| Z(jj) H(4l)                                                                                       | Z(vv) H(4l)                                                                                  |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Momentum of the softest lepton of<br>the reconstructed 4 lepton:<br>P <sub>min</sub> > 5 GeV      | Momentum of the softest lepton of<br>the reconstructed 4 lepton:<br>P <sub>min</sub> > 5 GeV |
| Missing momentum cut:<br>P <sub>miss</sub> < 40 GeV                                               | Missing momentum cut:<br>P <sub>miss</sub> > 100 GeV                                         |
| Visible energy of all reconstructed<br>Particles excluding the four leptons<br>$E_{vis}$ > 30 GeV |                                                                                              |
| Invariant mass of dilepton pair from the Off-Shell Z                                              | Invariant mass of dilepton pair from the Off-Shell Z<br>10 <m<sub>z* &lt; 65 GeV</m<sub>     |
| 10 <m<sub>Z* &lt; 65 GeV</m<sub>                                                                  |                                                                                              |
| Invariant mass of the 4 leptons:<br>124 < M <sub>4l</sub> < 125.5 GeV                             | Invariant mass of the 4 leptons:<br>124 < M₄ < 125.5 GeV                                     |

| Cuts                                                                                                                | Bckg (4µ)                                         | Z(jj) H(4µ)                                | Bckg (4e)                                   | Z(jj) H(4e)                                | Bckg (2e2µ)                                       | Z(jj) H(4e)                                |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------------|--------------------------------------------|
| No selection                                                                                                        | 50514                                             | 47                                         | 121755                                      | 49                                         | 48513                                             | 80                                         |
| P <sub>min</sub> > 5 GeV                                                                                            | 36048                                             | 44                                         | 46564                                       | 44                                         | 43851                                             | 74                                         |
| $P_{miss}$ < 40 GeV                                                                                                 | 26890                                             | 39                                         | 30891                                       | 39                                         | 37651                                             | 70                                         |
| E <sub>vis</sub> > 30 GeV                                                                                           | 2327                                              | 37                                         | 6365                                        | 37                                         | 1470                                              | 66                                         |
| 10 < M <sub>z*</sub> < 65 GeV                                                                                       | 1184                                              | 37                                         | 2472                                        | 37                                         | 537                                               | 66                                         |
| 124 < M <sub>41</sub> < 125.5 GeV                                                                                   | 3                                                 | 26                                         | 8                                           | 19                                         | 5                                                 | 40                                         |
|                                                                                                                     |                                                   |                                            |                                             |                                            |                                                   |                                            |
| Cuts                                                                                                                | Bckg (4µ)                                         | Z(vv) H(4µ)                                | Bckg (4e)                                   | Z(vv) H(4e)                                | Bckg (2e2µ)                                       | Z(vv) H(4e)                                |
| Cuts<br>No selection                                                                                                | <b>Bckg (4μ)</b><br>50514                         | <b>Ζ(νν) Η(4μ)</b><br>18                   | <b>Bckg (4e)</b><br>121755                  | <b>Z(vv) H(4e)</b><br>19                   | <b>Bckg (2e2μ)</b><br>48513                       | <b>Z(vv) H(4e)</b><br>26                   |
| Cuts<br>No selection<br>P <sub>min</sub> > 5 GeV                                                                    | <b>Вскg (4µ)</b><br>50514<br>36048                | <b>Ζ(νν) Η(4μ)</b><br>18<br>15             | <b>Bckg (4e)</b><br>121755<br>46564         | <b>Z(vv) H(4e)</b><br>19<br>15             | <b>Bckg (2e2μ)</b><br>48513<br>43851              | <b>Z(vv) H(4e)</b><br>26<br>24             |
| Cuts No selection P <sub>min</sub> > 5 GeV P <sub>miss</sub> > 100 GeV                                              | <b>Bckg (4μ)</b><br>50514<br>36048<br>1146        | <b>Ζ(νν) Η(4μ)</b><br>18<br>15<br>14       | Bckg (4e)<br>121755<br>46564<br>2944        | <b>Z(vv) H(4e)</b><br>19<br>15<br>13       | <b>Bckg (2e2μ)</b><br>48513<br>43851<br>175       | <b>Z(vv) H(4e)</b><br>26<br>24<br>22       |
| Cuts<br>No selection<br>P <sub>min</sub> > 5 GeV<br>P <sub>miss</sub> > 100 GeV<br>10 <m<sub>z* &lt; 65 GeV</m<sub> | <b>Bckg (4μ)</b><br>50514<br>36048<br>1146<br>683 | <b>Ζ(νν) Η(4μ)</b><br>18<br>15<br>14<br>13 | Bckg (4e)<br>121755<br>46564<br>2944<br>969 | <b>Z(vv) H(4e)</b><br>19<br>15<br>13<br>13 | <b>Bckg (2e2μ)</b><br>48513<br>43851<br>175<br>97 | <b>Z(vv) H(4e)</b><br>26<br>24<br>22<br>22 |

Event yield for the signal and background processes normalized to their cross sections and  ${\cal L}=10.\,8ab^{-1}$ 

#### Results

- Cuts were successful in rejecting most of the background
- It is possible to reach a significance s/ √(s+b) of 6 for the Z(jj)H(ZZ\*) channel and 4.7 for the Z(vv)H(ZZ\*) with a total of 9.674
- Statistical test is performed with the parameter of interest being the signal strength  $\boldsymbol{\mu}$
- Best-fit value of the signal strength is obtained with the uncertainty on its value at 68% Confidence Level.
- It is possible to reach a precision of 12% for the Z(jj)H(ZZ\*) channel and 22% for the Z(vv)H(ZZ\*) with a total of 10% at 68% CL.
- Systematic uncertainty on the estimation of ZZ and Hjj processes were considered with 10% on each.
- Possible upgrade to the sensitivity can be achieved with Deep neural networks or Boosted decision trees
- Study of all possible decay channels of ZH, HZZ must be performed.
- Results documented in an analysis note on the CERN document server, DOI:**10.17181/ey2ff-hqv83**

| Signal            | s/ √(s+b) | Precision at 68% CL |
|-------------------|-----------|---------------------|
| Z(jj)H(4µ)        | 4.828     | 1±0.2075            |
| Z(jj)H(4e)        | 3.656     | 1±0.2755            |
| Z(jj)H(2e2µ)      | 5.9628    | 1±0.2505            |
| Z(jj)<br>combined | 8.45      | 1±0.122             |
| Z(vv)H(4µ)        | 2.49      | 1±0.403             |
| Z(vv)H(2e)        | 2.12      | 1±0.4735            |
| Z(vv)H(2e2µ)      | 3.39      | 1± 0.4535           |
| Z(vv)<br>combined | 4.71      | 1±0.222             |
| Total             | 9.674     | 1±0.107             |

## Summary

- Future lepton colliders offer a clean environment and a known initial state which can provide high precision measurements of the Standard Model
- Future lepton colliders can also be used for BSM searches in low energy regions due to its clean environment
- A study of BSM physics at the International Linear Collider in Japan was proposed.
- We studied Dark matter at the ILC in the context of LPDM at a center of mass energy of 500 GeV and a total integrated luminosity of 1000 fb<sup>-1</sup>.
- The study demonstrates the potential of studying vector-like leptons nearly degenerate with dark matter ΔM < 100 GeV which is not accessible at the LHC.</li>
- A study of Higgs precision measurements at the Future Circular Collider FCC-ee to calculate the expected precision on the Higgs total width
- We studied the ZH production with Z(jj) and H → ZZ\* → 4l and calculated the expected precision on this decay channel
- A precision of 10% on the  $Z(jj)H(ZZ^* \rightarrow 4l)$  is reached at 68% CL.
- Input from other  $H \rightarrow ZZ^*$  decay channels are required to calculate the expected total uncertainty on the Higgs total width

# Thank you!