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Useful refs:

- Liddle: Introduction to Cosmology (Focus on Newtonian background cosmic evolution)
-Mo, van den Bosch & White:  Galaxy Formation and Evolution (a modern cosmological context)
- Ferreira: Lectures on General Relativity and Cosmology (simple intro with essentials) 
http://wwwastro.physics.ox.ac.uk/~pgf/B3..pdf
- Peacock: Cosmological Physics (Newtonian + GR). 
- Peebles: principles of Physical Cosmology (a classic with careful treatment; bit outdated)
- Weinberg: Cosmology (advanced, first chapter, to p 100, quite useful). 
- Ryden:  Introduction to cosmology (covers a lot at a reasonably simple level)

http://wwwastro.physics.ox.ac.uk/~pgf/B3..pdf


Cosmic Distance Scale

• Earth-Moon  ~ 1 light second  

• Earth-Sun ~ 8 light minutes

• Nearest stars

>~ few light yrs ~ parsec



What is a parsec? 

• Useful intro into diameter distance

• Distance at which earth orbit round sun (1 AU) 

subtends an angle  𝝑 of 1 arcsecond

Exercise: Find that 1 pc = 3.26 light year 

parsec = pc 

kpc = 1000 pc

Mpc = 1000 000 pc

Gpc = 1000 000 000 pc



The Milky Way Galaxy

Distance from sun to centre ~ 25 000 light years (8 kpc) 
Farthest individual stars seen by naked  eye ~ 1000 light years 



The (Local) Galaxy Population

Stars + Gas + Dust (+ Dark Matter) 

• May be disk or spheroid,; contain lots of gas or little; have active star 

formation or not. Some have quasars.



Old  and poor stars Younger stars with heavy elements  

Rotational support 

Random , ‘pressure’ support 



Need to Explain
• Shapes, sizes, masses of galaxies

• Distribution on sky

• Content

• evolution of above

Early evolution of galaxy mass function 
(Grazian et. al. 2015)

Within a cosmological model for the evolution of 

Universe! Using known laws of physics



Gravity   

governs

very weak   Long time scales 

BUT

 ONLY ATTRACTIVE (NO POSITIVE AND NEGATIVE)

 Long range 

 Wins on cosmic scales

 Makes and holds together stars and galaxies

and determines the cosmological evolution



Dynamical (virial) Equilibrium
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Note; Negative specific heat:  E ↓   R ↓ V ↑ 
 T   ↑  (if thermal) 

………………………………………………………………………………. …………………………………………………………………………………….

Exercise: Find dynamical cal (crossing) time R/v (density)
………………………………………………………………………………........................................................

 Higher entropy states  more inhomogeneous

The Peculiar force of gravity

No standard thermal equilibrium



Galaxies are not Relativistic

• By shrinking -- or increasing mass – pot. energy can become 
arbitrarily negative  equ implies 

• In GR  BH forms before ∞!

• In practice , in galaxies,  

• Because:  System fragments into stars before 
cooling catastrophe complete  collisionless (no cool)

++ Dominant non-dissipative component? 
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Galactic Characteristics

 Average Density ~ 10-24 kg/m3 (larger near centre)

 Compare with  5000 for Earth and 1 kg/m3 for air

 Time scales ~100 million years; speeds ~10-100 km/s

 Mass scale ~ 107 to 1013 solar masses (thermally governed)

 Most mass (particularly in outer regions) dark

 Nearest large galaxy > Million light years ~ Mpc



Larger scales (and back in time)

• Clusters of galaxies

1-10 Million light years ~ Mpc 

• Large scale structure

> few 100 Mil LY  ~ 100 Mpc

Towards the   horizon

~14   Gpc and ~ 14 Gyr



Why’s the Night Sky Dark?
Olber’s Paradox (from Kepler to Edgar Allan Poe!) 

• Take any solid angle in sky

• Area subtended at distance r is ~ 𝑟2

• And flux decrease goes as ~
1

𝑟2
 product const!

• So flux received from stacked system of stars 
should be huge – at least as in surface of star! 

Poe  Finite age. Good but what about radiation from hot big bang? 



Standard Picture of Cosmic Development



Newtonian Derivation of Cosmological 
Evolution Equations

• Consider universe with uniform energy density

• If scale large  need GR -- Newtonian gravity 
assumes instantaneous interaction (and v<<c)

• Take instead small patch

 fast communication ++ small speeds if  
homogeneously expanding/contacting.

• Because of homogeneity  all patches same 



Newton-Birkhoff theorem 

• Take said patch to be spherical 

(isotropy)

• Equation of motion 

With M = M (< r) – enclosed!



‘Energy Integral’ and interpretation

• Integrate, keeping enclosed mass constant

equilibrium
• ‘Energy’ E  universe forever expands (E>0) or recontracts (E<0)

• No solutions 

 Like a ball thrown up!
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−

𝐺 𝑀 (<𝑟)

𝑟
= E   

Exercise: use above equation, with E =0, to derive ‘typical timescale’ of evolution (density)
What do you notice?  



From Wayward Ball to Cosmological Fluid: 
Friedmann Equations 

1- Expanding radius through scale factor: 

2- Active gravitational mass density:

- Both rest energy and momentum contribute 

- Recall that hydro stress ~𝝆 𝒗𝒊𝒗𝒋 𝒘𝒊𝒕𝒉 𝒊, 𝒋 = 𝟏, 𝟑

By Symmetry 
No cross terms (anisotropic momenta)  + no streaming  (mass) motions -- 𝒗𝒊 = 𝟎.
 left with isotropic pressure terms (trace of space part) + density

- Weak field/small patch (quasi-static)

𝑀 = 𝜌′𝑟3

→ 𝛻2𝜙 = 4 𝜋 𝐺 𝜌 → 4 𝜋 𝐺 (𝜌 + 3 𝑝/𝑐2)

𝒓 = 𝑹 𝒂 𝒕



Notes regarding pressure

• Its effect is unlike hydro pressure force. 

• The latter comes from gradient, while in 
Friedmann universes 𝜵𝒑 = 𝟎.

• It comes from its mass equivalence

• Hence attractive if +ve and repulsive when –ve

• As it enters through a term 
𝑷

𝒄𝟐
~

𝝆𝒗𝟐

𝒄𝟐
+ 𝝆

 important only for particles if relativistic    



Fundamental Friedmann Equation 
Include pressure in energy conservation equation 

• Use 1st law of thermo for adiabatic expansion

Note: Because of homogeneity, local energy conservation holds. Not always true for gravity
Note: E here will have dimension of energy if scale factor is dimensional, otherwise [E] = [𝒕−𝟐]



In General Relativity (max symmetric space)  

FRW Metric 

Metric tensor 

Field equations

Ricci tensor Stress tensor 

෨𝑅ij = −2 𝑘 ෤𝑔𝑖𝑗



Space time decomposition

• Universe appears isotropic 
• ‘Copernican principle’: isotropic everywhere

 Homogeneous

Observers synchronize clocks

 agree on proper time of fundamental observers (cf. also Peebles Sec. I.4)

Defined,  e.g., in terms of  the homogeneous density 

𝑑 𝑠2 = −𝑐2𝑑 𝑡2 + 𝑎 𝑡 𝑑 𝑙2

At proper time t, the proper distance is 𝒂 𝒕 𝒍



The Static (closed) Space Metric

• Choose four dim. Spherical coordinates:

• Line element on surface of sphere 





R  = const defines surface of 3-sphere
𝑹𝐬𝐢𝐧𝝌 defines radius of 2-subsphere 

𝑑 𝑙2

Exercise
++ -ve curvature 



After Mo, van den Bosch & White 

Thus one can write, 
or

Or, more compactly 

R

𝑹 𝝌

r 𝝑

𝑑 𝑙2

𝑑 𝑙2 =

𝒅 𝒍𝟐 = 𝑹𝟐 𝒅 𝝌𝟐 + 𝒓𝟐𝒅 𝜴

Note: 

1- 𝑹 𝝌 is a geodesic distance 

2- 𝒓 𝝑 is an  arclength on sub-sphere (circle on fig.)

3- 𝒓𝟐𝒅 𝛀 is an area on sub-sphere (circle * d phi)



Adding Expansion and Time

𝒅 𝒔𝟐 = −𝒄𝟐𝒅 𝒕𝟐 + 𝒂𝟐 𝒕 [𝑹𝟐 𝒅 𝝌𝟐 + 𝒓𝟐𝒅 𝜴]

Positive Curvature 

Negative curvature 

Flat (zero curvature) 

Conventions:   i)  𝒌 = −
𝟏

𝑹𝟐
, 𝟎, +

𝟏

𝑹𝟐
 r has length unit  a is dimensionless  (with 𝐚𝟎 = 𝟏)

ii) k =    -1,   0,  + 1    r  is  dimensionless  R  = 1  a has  length unit

𝒓 = 𝑹𝐬𝐢𝐧𝝌

𝒓 = 𝑹𝐬𝐢𝐧𝐡𝝌

𝒓 = 𝑹 𝝌

R a is radius of curvature
 Ricci scalar ~ 𝑅 𝑎 −2



Geometry and Density  

If E= k = 0 flat space

In general 

Note:
What starts flat stays flat
Same for open (-ve k) 
and closed  (+ ve k)

𝐻2 =



To begin Fixing our Model: 
Expansion Redshift 

𝒕 = 𝒕𝟏 →→→ 𝒕𝟎

Hubble Constant usually expressed in km/s/Mpc

/𝑐



Hubble Time 𝒕𝑯 = 𝑯𝟎
−𝟏

Exercise: Check that for Hubble const of 71 km/s/Mpc, the Hubble time is a bit less than 14 Gyr

Hubble sphere radius 

d ≪ 𝐷𝐻  (communication time faster than expansion time)

𝑫𝑯= 𝒄 𝑯𝟎
−𝟏



Conformal Time and Comoving Distance 

• In terms of conformal time 

• Metric becomes

• Comoving distance 
between ‘us’ (at  𝒕 = 𝒕𝟎) and light (ds = 0) emitted at time t:



𝒅 𝒔𝟐 = 𝒂𝟐(𝝉) [− 𝒅 𝝉𝟐 + 𝑹𝟐 𝒅 𝝌𝟐 + 𝒓𝟐𝒅 𝜴]

𝑫𝑪 = 𝑹

Is a geodesic distance; not measurable 

In ‘’today’s currency” -- measure 



Fixing our Model: 
Expansion Redshift 

𝒕 = 𝒕𝟏 →→→ 𝒕𝟎

𝝉 𝐭𝟎 − 𝝉 𝒕𝟏 = 𝑫𝑪 → (𝐢𝐧𝐯𝐚𝐫𝐢𝐚𝐧𝐭)

→ 𝜹 𝝉 𝐭𝟎 − 𝜹 𝝉 𝒕𝟏 = 𝟎

Frequencies proportional to time intervals 



Light from galaxies redshifted 

Nobel 2011  acceleration!

Measuring Redshifts 



Distances: Angular and Luminosity 

• In flat space: Object of physical size D has angular extension 
𝛿𝜗 if it is at distance 𝐷𝐴:

𝐷 = 𝐷𝐴 𝛿𝜗

• In flat space luminosity of object follows inverse square law. 
The luminosity distance is defined in terms of the intrinsic 
luminosity L (energy emitted per second) as,

• 𝐷𝐿 here is  just the regular Euclidean distance 

• F the observed flux (energy reconceived per second) 

• Assumed transparent medium 



Calibrating distances: Parallaxes and Cepheids



Magnitudes: from Ptolemy of Alexandria 

to the Distance Modulus

• Classified stars from (apparent) brightest 1st to least bright 6th


Magnitude gets smaller for brighter objects

• Defines a logscale (eye response to light logarithmic)

• For historical reasons (see Weinberg and refs there.. Or Wiki!)

• 𝑴 𝟎𝐛𝐣𝐞𝐜𝐭 −𝑴 𝐒𝐮𝐧 = −𝟐. 𝟓 𝐥𝐨𝐠𝟏𝟎
𝑳 𝐨𝐛𝐣𝐞𝐜𝐭

𝑳 𝐒𝐮𝐧

𝑫𝑳

Apparent bolometric magnitudes m and absolute M (above; def. at 10 pc) are related by 



Fixing Intrinsic Luminosity at > Gpc:  Supernovae 1A

Galaxy Rotation 
(Tully-Fisher Relation)

Ongoing progress at high z… After Riess et. al. 

M (visual, Sun) ) ~ 5 

After Tom 
Andersen



Light from galaxies redshifted 

Nobel 2011  acceleration!

Measuring Redshifts 



Distances: Angular and Luminosity 

• In flat space: Object of physical size D has angular extension 
𝛿𝜗 if it is at distance 𝐷𝐴:

𝐷 = 𝐷𝐴 𝛿𝜗

• In flat space luminosity of object follows inverse square law. 
The luminosity distance is defined in terms of the intrinsic 
luminosity L (energy emitted per second) as,

• 𝐷𝐿 here is  just the regular Euclidean distance 

• F the observed flux (energy reconceived per second) 

• Assumed transparent medium 



To begin Fixing our Model: 
Expansion Redshift 

𝒕 = 𝒕𝟏 →→→ 𝒕𝟎

Hubble Constant usually expressed in km/s/Mpc

/𝑐



A higher z Hubble diagram 

• Contents Dynamical History Which model? 

Actually…  what distances  we measure? 

After Gautham Narayan



Angular dist. in cosmological context 

Objects of proper length D  

Emitting at a(t) 
at angular scale 𝒅𝜽

Such that 

d𝒔 = 𝑫 = 𝒂 𝒕 𝒓 𝒅𝜽 = 𝑫𝑨 𝒅𝜽

→ 𝑫𝑨 = 𝒓/(𝟏 + 𝒛)

Known object size + angle on sky  r +++ can also find r from cosmological model

R
D



Cosmological Luminosity Distance 

• Recall

• Distance multiplying solid angle, 𝒂 𝒕 𝒓𝟐𝒅 𝜴,  area element

• At time 𝒕𝟎 light  reaches us (𝒂𝟎 = 𝟏) proper area of sphere drawn around object  
𝟒 𝝅 𝒓𝟐 (same as area centered here and touching object)

• Again

• But two further  effects:

• i) Photons are redshifted (less energetic)
• Ii) Rate at which they arrive is smaller 
• Both by factors 1/ (1+z)

 𝑫𝑳= 𝒓 𝟏 + 𝒛 = 𝐃𝐀 𝟏 + 𝐳 𝟐

(if convention with dimensional scale factor  a is used there’s an extra  factor of 𝑎 𝑡0 = 𝑎0)

𝒅 𝒔𝟐 = −𝒄𝟐𝒅 𝒕𝟐 + 𝒂𝟐 𝒕 [𝑹𝟐 𝒅 𝝌𝟐 + 𝒓𝟐𝒅 𝜴]



To begin Looking for r (from last time)

𝒅 𝒔𝟐 = −𝒄𝟐𝒅 𝒕𝟐 + 𝒂𝟐 𝒕 [𝑹𝟐 𝒅 𝝌𝟐 + 𝒓𝟐𝒅 𝜴]

Positive Curvature 

Negative curvature 

Flat (zero curvature) 

Conventions:   i)  𝒌 = −
𝟏

𝑹𝟐
, 𝟎, +

𝟏

𝑹𝟐
 r has length unit  a is dimensionless  (with 𝐚𝟎 = 𝟏)

ii) k =    -1,   0,  + 1    r  is  dimensionless  R  = 1  a has  length unit

𝒓 = 𝑹𝐬𝐢𝐧𝝌

𝒓 = 𝑹𝐬𝐢𝐧𝐡𝝌

𝒓 = 𝑹 𝝌

R a is radius of curvature
 Ricci scalar ~ 𝑅 𝑎 −2



Geometry and Density  

If E= k = 0 flat space

In general 

Note:
What starts flat stays flat
Same for open (-ve k) 
and closed  (+ ve k)

𝐻2 =



Fixing comoving scale

• 𝝌 =
𝑫𝑪

𝑹
and 

 Known with a (t) and R! 

• For R: let scale factor dimensionless. 𝑎0 = 1, 𝒌 = ± 𝟏/𝑹𝟐

• Using                                     and    Fixing at ‘now’:

 𝒌 =
𝑯𝟎
𝟐

𝒄𝟐
𝜴𝟎 − 𝟏  need a (t) then!

Note:  r is sometimes referred to as ‘proper motion distance’ or ‘transverse commoving distance’,  𝑫𝑴



Evolution of Friedmann Universes

• To solve equation  need  𝝆 = 𝝆 𝒂 .

• ‘Heuristically’, we have: 

Matter  𝝆𝑴~𝒂
−𝟑

Radiation  𝝆𝑹~𝒂
−𝟒

Cosmological constant  𝝆𝜦 = 𝐜𝐨𝐧𝐬𝐭.



Using conservation law 

• Assume

• Then

𝒑 = 𝟎

𝐩 = − 𝛒 𝐜𝟐

𝐩 =
𝟏

𝟑
𝛒 𝐜𝟐

Recall 



Our understanding  universe went through the following phases

1- Vacuum domination and vast exponential expansion  (‘inflation’)
2- Radiation domination 
3- Matter radiation 
4- ‘Recent’ vacuum donation (again) 

And that it is quite flat…

Note: early universe 
nearly flat anyway!

Evolution in spatially flat Universe 



Horizons 

• Hubble Sphere 𝑫𝑯= 𝒄 𝑯𝟎
−𝟏

• Light emmited at time past and probed at future time 
𝒕𝒇, covers commoving distance: 

𝑫𝑪 = 𝒄න
𝒕𝒆

𝒕𝒇 𝒅𝒕′

𝒂 𝒕′

• Converges at lower limit  some past events can’t be 
observed at 𝒕𝒇 particle horizon 𝒕𝒆 → 𝟎, 𝐚𝐧𝐝 𝒕𝒇 = 𝒕𝟎

Farthest we can see… ~ 14 Gpc comoving. 

• Converges  at upper limit current events cannot be seen  in 
future  ‘event horizon’ with 𝒕𝒆 = 𝒕𝟎 and  𝒕𝒇 → ∞



Distances: with (almost) everything in it 

and    𝝆𝒄𝟎 =
𝟑𝑯𝟎

𝟐

𝟖𝝅𝑮
; 𝛀𝑴𝟎 =

𝝆𝑴𝟎

𝝆𝒄𝟎
𝐞𝐭𝐜…

𝜴𝒌 = −
𝒌 𝒄𝟐

𝒂𝟐𝑯𝟐 = ±
𝐜𝟐

𝐑𝟐𝐚𝟐𝐇𝟐 = ±
𝑫𝑯
𝟐

𝑹𝟐𝒂𝟐

 Now compare with observations; e.g. supernovae 

𝑯𝟐 =

(exercise)

Exercise



Expansion and its Acceleration: 
Dark Energy and Dark Matter

Current  acceleration  
Dark energy 

Past deceleration rate  
Dark matter



Lambda-CDM

• Measurements  vanishing spatial curvature, ~ 70 % dark energy, 25 % dark matter 

Hashim et. al. (2021)

• Parameters in  agreement with CMB and LSS (coming lectures). 
• But measurements of Hubble parameter in  tension with these. 



Fluctuations in the CMB  seeding structure

Coming  talks 



Local Form of Coordinate Distance 

• Expand scale factor around local value:

• ‘Deceleration’ parameter 

• Expand r to get (note the flat space approximation emerges; technically should divide 
both sides of eq. by 1/R then expand, then multiply again. Assume 𝑎0 = 1)

\ 𝑐 𝑡 − 𝑡0 + 𝑐 𝐻0
𝑡0−𝑡

2

2
+ … = 𝑟 + …

• Then (exercise) 
𝑟


