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Motivation

↪→ Inflation: An early phase of accelerated expansion.

X UV-completion? Resolving the big bang singularity? Initial conditions?

Derivation from fundamental physics? Embedding in String Theory?

↪→ Early-universe: Toy models inspired by QG (e.g. LQC) vs. Coarse-grain
cosmological dynamicsfrom fundamental UV d.o.f.s (e.g. GFT, SGC) →
Top-down derivation of (early-universe) cosmology from full QG!

↪→ New standard model of cosmology → No arbitrary tunable parameters!
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Motivation

↪→ Inflation: An early phase of accelerated expansion.

X UV-completion? Resolving the big bang singularity? Initial conditions?

Derivation from fundamental physics? Embedding in String Theory?

↪→ Early-universe: Toy models inspired by QG (e.g. LQC) vs. Coarse-grain
cosmological dynamicsfrom fundamental UV d.o.f.s (e.g. GFT, SGC) →
Top-down derivation of (early-universe) cosmology from full QG!

X Solution to standard cosmological puzzles ⇒ Falsifiable predictions for
the early universe.

↪→ New standard model of cosmology → No arbitrary tunable parameters!

Alternate description of the early-universe from Matrix Theory .
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Successful scenarios of early-universe cosmology

↪→ SBB cosmology successfully explains:

X Expansion of the Universe: Hubble Law

X Existence of the CMB

X Abundance of light elements: BBN
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Successful scenarios of early-universe cosmology

↪→ The wish-list of an early-universe cosmologist:

Solution to the standard horizon problem ⇐ Hubble radius smaller
than causal horizon is all that is needed. [Brandenberger, 2011]

Solution to the standard flatness problem ⇐ Spatially flat universe.

Origin of structure ⇐ Scale invariant power spectrum of adiabatic
perturbations. [Sunyaev & Zel’Dovich; Peebles & Yu, 1970]

Singularity-resolution ⇐ Derivation from a fundamental quantum
gravity theory.
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Beyond EFT descriptions

Photo credit: P. Adshead

Swampland implies short-lived meta-stable dS vacua can exist ⇒
Consistent with low-scale models of inflation.
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Beyond EFT descriptions

[Bedroya, Brandenberger, LoVerde, Vafa, 2019]

Swampland implies short-lived meta-stable dS vacua can exist ⇒
Consistent with low-scale models of inflation.
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X Evidence from calculations of QFT on accelerating spacetimes ⇒
Entanglement entropy of cosmological perturbations & the second law
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UV-complete theory going beyond simple EFT!
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X End state of QG ⇒ Initial state for inflation? Deviations from BD?
Observable consequences?

X Inflation as an EFT of simple scalar dofs with higher order terms added
as one goes back in time might not be the final picture. Difficulty of
embedding (quasi)-dS in String Theory ⇒ Need to go beyond EFT!

X Evidence from calculations of QFT on accelerating spacetimes ⇒
Entanglement entropy of cosmological perturbations & the second law
limits inflationary phase from the observed reheating entropy.
[S.B., Alaryani, & Brandenberger, PRD 2020]

↪→ For a consistent realization of inflation, it has to be derived from a
UV-complete theory going beyond simple EFT!

Symmetries of QG, e.g., String Dualities, can play a pivotal role in this!
New symmetries (T-duality) ⇔ New states (Winding modes)
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Alternatives
↪→ Alternate descriptions of early-universe cosmology:

Examples: String Gas Cosmology [Brandenberger & Vafa, 1989], Ekpyrotic
bounce [Khoury, Ovrut, Steinhardt & Turok, 2001], Early phase of topological
gravity [Agrawal, Gukov, Obied & Vafa, 2020], CPT-symmetric universe [Boyle

& Turok, 2018-22], Matter bounce [Brandenberger, Wands, Wilson-Ewing, Cai &

Wilson-Ewing, . . . ], , . . .

Figure Credit: R. Brandenberger
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Matrix Models: Non-perturbative String Theory

↪→ The BFSS matrix model [Banks, Fischler, Shenker & Susskind, 1997]:

SBFSS =
1

g 2

∫
dtTr

{
1

2
(DtXi )

2 − 1

4
[Xi ,Xj ]

2 +
1

2
ψαDtψα −

1

2
ψαγ

i
αβ [Xi , ψβ ]

}
where Dt ≡ ∂t − i [At , ·] and N × N bosonic matrices A(t),Xi (t)
(i = 1, . . . , d) and ψα(t) (α = 1, . . . , p).

X Quantum Mechanical model of 9 bosonic U(N) matrices and their 16
fermionic superpartners.
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↪→ BFSS (IKKT) model is a non-perturbative proposal for M-theory (IIB
superstring theory) → Matrix regularization of supermembrane world
volume action (Schild-gauge world sheet action). [Hoppe . . . ]
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↪→ BFSS (IKKT) model is a non-perturbative proposal for M-theory (IIB
superstring theory) → Matrix regularization of supermembrane world
volume action (Schild-gauge world sheet action). [Hoppe . . . ]

X Spacetime emerges from eigenvalue distribution!

X Price of coarse-graining cosmology from abstract matrix dofs rewared by
direct connection to ST ⇒ No abundance of free parameters! Beyond 4d
toy-models in ST. String dualities expected to play a pivotal role.

↪→ A consistent, principled top-down approach to early-universe cosmology
with the promise of rich phenomenology.

• No Fock-space EFT description: No cosmological constant problem!

• UV-complete: Eigenvalues never become trivial ⇒ No singularities!
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Emergent (3 + 1)-d spacetime: Numerical evidence
[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . . ]

↪→ Lorentzian IKKT model: Z ∼
∫

dAdΨ e iSIKKT

X Diagonalize A0 : α1 < . . . < αN .

X Define time via coarse-graining :

t(ν) :=
1

n

n∑
i=1

αν+i , ν = 1, . . . ,N − n

X Non-trivial to obtain dynamical
band-diagonal structure!
→ Time-dep n × n spatial matrices:(
Āi

)
I ,J

(t(ν)) := (Ai )ν+I ,ν+J
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Emergent (3 + 1)-d spacetime: Numerical evidence

[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . . ]

↪→ Lorentzian IKKT model: Z ∼
∫

dAdΨ e iSIKKT

X Numerical results show SSB SO(9)→ SO(3) at some tc .

↪→ Emergence of 3 large spatial dimensions:

X As order parameter, de-
fine moment of inertia tensor

Tij(t) :=

〈
1

n
TrĀi (t)Āj(t)

〉
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Emergent (3 + 1)-d spacetime: Numerical evidence

[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . . ]

↪→ Lorentzian IKKT model: Z ∼
∫

dAdΨ e iSIKKT

X Numerical results show SSB SO(9)→ SO(3) at some tc .

↪→ Emergence of 3 large spatial dimensions:

X Extent of a given spa-
tial dimension parameter:

x2
i (t) :=

〈
1

n
Tr Āi (t)2

〉
→ Total extent of space pa-

rameter: R2(t) =
9∑

i=1

x2
i (t)
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↪→ Recent analytical evidence of SSB in the Euclidean BFSS model using
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X Preliminary numerical results do not indicate that we have exponentially
expanding space (not a microscopic model of inflation) but nevertheless an
alternate UV-complete (singularity-free) model of the early universe.

Suddhasattwa Brahma Emergent spacetime from Matrices 7/17



Emergent (3 + 1)-d spacetime: Numerical evidence

[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . . ]

X Numerical results show SSB SO(9)→ SO(3) at some tc .

X Qualitatively similar to dynamical mechanism of string gas cosmology.

↪→ Recent analytical evidence of SSB in the Euclidean BFSS model using
Gaussian expansion method. Also works for IKKT model.
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[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . . ]

X Numerical results show SSB SO(9)→ SO(3) at some tc .

X Qualitatively similar to dynamical mechanism of string gas cosmology.

↪→ Recent analytical evidence of SSB in the Euclidean BFSS model using
Gaussian expansion method. Also works for IKKT model.
[S.B., Brandenberger & Laliberté, 2209.01255 (EPJC); Laliberté & S.B., 2304.10509 (JHEP)]

X Preliminary numerical results do not indicate that we have exponentially
expanding space (not a microscopic model of inflation) but nevertheless an
alternate UV-complete (singularity-free) model of the early universe.

X Non-geometric phase preceding SSB gives way to standard big bang
cosmology → Late-time behaviour indicate radiation-dominated era
a(η) ∼ η. [S.B., Brandenberger & Laliberté, 2206.12468 (JHEP)]

Takeaway: A (3 + 1)-d universe emerges dynamically from
non-perturbative (matrix model) description of superstring theory
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Coarse-graining spacetime from abstract matrices

[S.B., Brandenberger & Laliberté, 2206.12468 (JHEP)]

↪→ Emergent time identified from the diagonal elements of A0 matrix,
ordered as A0 = diag(t1, . . . , tN) with ti > tj for i > j .

↪→ In the diagonal A0 basis, the eigenvalues of the Ai matrices decay when
moving away from the diagonal ⇒ Band-diagonal structure.

X tmax ∼
√
N, and discrete time eigenvalues scale as: ∆t ∼ 1/

√
N.

X In the N →∞ limit, emergent continuous and infinite time.

X Total physical extent of space: `phys ∼
√
N.

X Continuous and infinite extent of space when N →∞!

↪→ Emergent metric: gij(n, t) = A(t) δij , Assumption: SO(3) symmetry.

No Flatness Problem! Independent of isotropy assumption.
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Cosmology from a thermal state in BFSS

↪→ Consider a thermal state in the BFSS model.

↪→ Start with the Euclidean BFSS model and consider its compactification

on a thermal circle: BFSS
T→∞−−−−→ IKKT (natural to assume thermal state)

 SBFSS(β) = 1
2g2

β∫
0

dt Tr
{

(DtXi )
2 − 1

2
[Xi ,Xj ] + fermions

}
, β = 1/T .

 Fourier expand fields as Xi (t) =
∑
n

X n
i e

inωt in Matsubara frequencies

ω = 2πT .

↪→ SBFSS = S0 + Skin + Sint, where S0 =: Sbosonic
IKKT (zero-mode action).

X One can just as well start with a thermal state in the IKKT model (by
compactifying the A0 matrix through the method of images) and use that
to derive cosmology (T → 1/T ). We find the same background and a scale
invariant spectrum, although with slight O(1) factors different in the
amplitude. [Laliberté & S.B., 2304.10509 (JHEP)]
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Formalism: Cosmo perturbations in thermal state
↪→ To confront with observations, need cosmological perturbations: go
beyond IKKT model (include O(1/T ) corrections for the thermal state
expectation values).

X Justified to use Einstein’s equations since we are considering IR modes
(as in String Gas) with the BFSS producing the source term.

Thermal state formalism: [Nayeri, Brandenberger & Vafa, 2005]

↪→ Thermal fluctuations considered in String gas cosmology and Warm
Inflation. Unlike in standard inflation or ekpyrosis, perturbations not
sourced by quantum vacuum fluctuations.

 Scalar modes:
〈
|Φ(k)|2

〉
= M−4

Pl k
−4
〈
δT 0

0 (k)δT 0
0 (k)

〉
=: C 00

00

 Tensor modes:
〈
|h(k)|2

〉
= M−4

Pl k
−4
〈
δT i

j (k)δT i
j (k)

〉
=: Cij

ij , i 6= j .

↪→ For a thermal state, perturbations are sourced by (box of side R):

C 00
00 =

T 2

R6
CV , CV =

(
∂E

∂T

)
V

C ij
ij = α

T

R2

∂p̃

∂R
, p̃ = − 1

R3

∂F
∂ lnR
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High temperature thermodynamics of BFSS model
↪→ Calculate thermodynamic quantities in the Euclidean BFSS model and
expand in the high T limit (dimensionless expansion parameter:

√
g 2N/T 3)

↪→ SBFSS = S0 + Skin + Sint, where S0 =: SIKKT (zero-mode action).

↪→ Free energy up to next-to-leading order (IKKT + corrections):

F(R, β) =
3N2

4β

[
χ2 lnβ − 2

3

(
d − 1

12
− p

8

)(
N2χ2 −

N2

d
χ2 − 4

)
χ1 β

3/2

]
χ1 :=

〈
1
N

Tr (Ai )
2〉

IKKT
∝ R2, χ2 :=

〈
1
N

Tr (Fij)
2〉

IKKT
evaluated in S0.

X Integrate over non-zero modes alone to arrive at above results since we
want to expand around the IKKT background. After integrating out
non-zero modes using perturbation theory, the leftover integration over the
zero modes can be thought of as taking the expectation value of connected
Green’s functions using the bosonic part of the IKKT action.

X Use approximations to evaluate higher-order moments of zero-modes.

XCV positive for d = 3, p = 4 and thermodynamics is well-defined.

↪→ We have all the quantities required C 00
00, C

ij
ij to calculate spectrum of

cosmological perturbations in the BFSS thermal state. [Kawahara, Nishimura &

Takeuchi, 2007; S.B., Brandenberger & Laliberté, 2107.11512 ]

Suddhasattwa Brahma Emergent spacetime from Matrices 11/17



High temperature thermodynamics of BFSS model
↪→ Calculate thermodynamic quantities in the Euclidean BFSS model and
expand in the high T limit (dimensionless expansion parameter:

√
g 2N/T 3)

↪→ SBFSS = S0 + Skin + Sint, where S0 =: SIKKT (zero-mode action).

↪→ Free energy up to next-to-leading order (IKKT + corrections):

F(R, β) =
3N2

4β

[
χ2 lnβ − 2

3

(
d − 1

12
− p

8

)(
N2χ2 −

N2

d
χ2 − 4

)
χ1 β

3/2

]
χ1 :=

〈
1
N

Tr (Ai )
2〉

IKKT
∝ R2, χ2 :=

〈
1
N

Tr (Fij)
2〉

IKKT
evaluated in S0.

X Integrate over non-zero modes alone to arrive at above results since we
want to expand around the IKKT background. After integrating out
non-zero modes using perturbation theory, the leftover integration over the
zero modes can be thought of as taking the expectation value of connected
Green’s functions using the bosonic part of the IKKT action.

X Use approximations to evaluate higher-order moments of zero-modes.

XCV positive for d = 3, p = 4 and thermodynamics is well-defined.

↪→ We have all the quantities required C 00
00, C

ij
ij to calculate spectrum of

cosmological perturbations in the BFSS thermal state. [Kawahara, Nishimura &

Takeuchi, 2007; S.B., Brandenberger & Laliberté, 2107.11512 ]
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Cosmological observables from the BFSS theory

We find scale-invariant spectrum for IR modes of observational interest
[S.B., Brandenberger & Laliberté, 2107.11512]

Pζ ∼ (`sMPl)
−4O(1), Ph ∼ α (`sMPl)

−4O(1). SG: A ∼ (`sMPl)
−4

↪→ UV-modes for density perturbations have a Poisson spectrum (∝ k2);
distinct from inflation but not of (direct) observable consequence. Tensor
spectrum only has a scale-invariant part.

X Phenomenologically relevant predictions to appear for tensor-to-scalar
ratio (α ∼ off-diagonal), abundance of PBHs (UV spectrum), large
primordial B-fields (thermal state) and non-Gaussianities (bispectra).
Small tilt from next order corrections and due to the SSB phase transition.

↪→ The exact time-dependent expansion of χ1 not required for above result!

↪→ Yet to work out details of the SSB phase transition. Nevertheless can
make clear predictions. Similar to reheating phase in inflation.

X Free from swampland constraints → No landscape of tunable parameters
coming from curling up extra dimensions. Not anything goes!

Suddhasattwa Brahma Emergent spacetime from Matrices 12/17



Cosmological observables from the BFSS theory

We find scale-invariant spectrum for IR modes of observational interest
[S.B., Brandenberger & Laliberté, 2107.11512]
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Pζ ∼ (`sMPl)
−4O(1), Ph ∼ α (`sMPl)

−4O(1). SG: A ∼ (`sMPl)
−4

↪→ UV-modes for density perturbations have a Poisson spectrum (∝ k2);
distinct from inflation but not of (direct) observable consequence. Tensor
spectrum only has a scale-invariant part.

X Phenomenologically relevant predictions to appear for tensor-to-scalar
ratio (α ∼ off-diagonal), abundance of PBHs (UV spectrum), large
primordial B-fields (thermal state) and non-Gaussianities (bispectra).
Small tilt from next order corrections and due to the SSB phase transition.

↪→ The exact time-dependent expansion of χ1 not required for above result!

↪→ Yet to work out details of the SSB phase transition. Nevertheless can
make clear predictions. Similar to reheating phase in inflation.

X Free from swampland constraints → No landscape of tunable parameters
coming from curling up extra dimensions. Not anything goes!

Suddhasattwa Brahma Emergent spacetime from Matrices 12/17



Cosmological observables from the BFSS theory

We find scale-invariant spectrum for IR modes of observational interest
[S.B., Brandenberger & Laliberté, 2107.11512]
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How does space emerge from matrices?

X Single U(N) matrix QM is known to be equivalent to 2d String Theory.

S =

∫
dt Tr

[
(∂tM)2 − V (M)

]

↪→ One can work with the eigenvalues: M = U−1 diag(λi ) U

↪→ A natural set of gauge-invariant operators are: φk = Tr
(
e ikM

)
• The collective field formalism: Description in terms of density eigenvalues
with the constraint

∫
dx φ(x) = N

X Change of variables M → φ leads to (1 + 1)− d field theory:

Hφ =

∫
dx

[
1

2
∂xπ(x) φ(x) ∂xπ(x) +

π2

6
φ3(x)− (µF − V (x))φ(x)

]

The collective field has a natural interpretation as a field in a higher
dimensional theory [Das & Jevicki]
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Collective field formalism for multi-matrix models

↪→ A direct transformation to collective field for more than one matrices
can only be implemented numerically → Impossible to solve the
‘Schwinger-Dyson’ equations analytically.

• Toy BFSS model: S = 1
2ls

∫
dt Tr

[
DtX

2 + DtY
2 − 2

l4s
[X ,Y ]2

]
X New Proposal: Fix the gauge by first diagonalizing one of the matrices.

X Next, integrate out the off-diagonal strings
To get a time-local effective action, we need to add a mass term Tr

(
m2Y 2

)
to the action. Then, to leading order:

Seff =

∫
dτ

(
1

2ls

(
N∑
i

λ̇2
i +

N∑
i

ρ̇2
i

)
− 1

4ml4
s

N∑
i<j,i=1

(λi (τ)− λj (τ))2

)

Possible to get a (2 + 1)-d collective field action! Starting point for
connection to String Theory → Geometry from Entanglement
[with Brandenberger, Dasgupta, Lei & Pasiecznik]
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Ẏ ∗ij Ẏij +
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Collective field: Integrating out off-diagonal elements

H =
ls
2

∫
dx dy [∂xπ(x , y)φ(x , y)∂xπ(x , y) + ∂yπ(x , y)φ(x , y)∂yπ(x , y)]

+
lsπ

2

6

∫
dx dy φ3(x , y) +

ls
8

∫
dx dy

(∂yφ(x , y))2

φ(x , y)

− 1

16ml4
s

∫
dx dy dx ′ dy ′ φ(x , y)(x − x ′)2φ(x ′, y ′) +

lsm
2

2

∫
dx dy y 2φ(x , y)

−λ
[∫

dx dy φ(x , y)− N

]

• Has the right expression when we turn off the second matrix
(compactifying y -direction to zero)!

• Yet to understand physical interpretation of taking the massless limit of
this model to preserve connection to String Theory!
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Conclusions
X It has been notoriously difficult to find accelerating solutions in string

theory → Inflation as a coherent state over warped Minskowski? dS
does have such an interpretation!
[S.B., Dasgupta & Tatar, JHEP, 2020; S.B., Dasgupta, Guo & Kulinich, JHEP, 2024]

X M-theory consistency rules out large classes of bounce models.
[Bernardo, S.B., Dasgupta Mir & Tatar, Phys. Rev. Lett., 2021]

? A new path towards a UV-complete paradigm for the early universe:

X Numerical evidence for the emergence of 3 large spatial dimensions
from full String Theory.

X Analytically extract a coarse-grained time, space and metric.

X Thermal fluctuations ⇒ Scale invariant primordial perturbations.

X Horizon problem, Flatness problem and formation of structure from
first-principles in a fundamental quantum gravity theory.

X No vacuum energy problem → Transition from non-geometric
emergent phase to radiation dominated era. No cosmological constant.

X Possible to work with the full IKKT model alone and consider a
thermal state in it. [Laliberté & S.B., JHEP, 2023]
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Looking ahead

? A new path towards a UV-complete paradigm for the early-universe.
Ambitious, promising but a lot remains to be done:

Details of non-geometric phase → Connection to non-commutative
geometry emergent in the UV? [H. Steinacker; A. Chaney & A. Stern; . . . ]

Physical explanation of the SSB phase? Connection with String Gas?
Interestingly, non-geometric phase has p = 0 (quasi-static phase).

↪→ Strings as solitonic states in Matrix models → Annihilation of string
loops into radiation. Collective field formalism!

Derive background cosmology from BFSS model (combine MC
simulations and analytical insights). Derive Friedmann equations!

A gauge-invariant notion of entanglement for matrices using the
Collective Field → Area-law for toy models. [Frenkel & Hartnoll; Das,

Kaushal, Mandal, Liu, Trivedi; Hampapura, Harper & Lawrence, . . . ]

Observable consequences: NG, PBHs from the Poisson part of the UV
spectrum, Primordial B fields, . . .

...
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