Emergence of spacetime from string-theoretic Matrix Models

Suddhasattwa Brahma

Higgs Centre for Theoretical Physics, University of Edinburgh

 $(in$ collaboration with R. Brandenberger, K. Dasgupta, S. Laliberté, Y. Lei and J. Pasiecznik)

November 5, 2024

④ ロチ (4 部) (4 월) (4 월)

 $2Q$

 \hookrightarrow Inflation: An early phase of accelerated expansion.

イロト イ団 トイモト イモトー

重

 \hookrightarrow Inflation: An early phase of accelerated expansion.

 \hookrightarrow But inflation is past-incomplete \rightarrow What came before inflation?

 \leftarrow \Box \rightarrow

メタトメミトメミト

唐

- \hookrightarrow Inflation: An early phase of accelerated expansion.
- \hookrightarrow But inflation is past-incomplete \rightarrow What came before inflation?

Credit: Pablo Laguna

4 0 8

B

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

- \hookrightarrow Inflation: An early phase of accelerated expansion.
- \hookrightarrow But inflation is past-incomplete \rightarrow What came before inflation?
- \hookrightarrow Initial conditions for inflation to begin?

a mille

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

Þ

- \hookrightarrow Inflation: An early phase of accelerated expansion.
- \hookrightarrow But inflation is past-incomplete \rightarrow What came before inflation?
- \hookrightarrow Initial conditions for inflation to begin?

す口を す部を すぼを すぼを

Þ

 \hookrightarrow Inflation: An early phase of accelerated expansion.

 \checkmark UV-completion? Resolving the big bang singularity? Initial conditions?

 \leftarrow \Box \rightarrow

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

È

 \hookrightarrow Inflation: An early phase of accelerated expansion.

 \checkmark UV-completion? Resolving the big bang singularity? Initial conditions?

Derivation from fundamental physics? Embedding in String Theory?

 \leftarrow \Box

ADAMENTER

 \hookrightarrow Inflation: An early phase of accelerated expansion.

 \checkmark UV-completion? Resolving the big bang singularity? Initial conditions?

Derivation from fundamental physics? Embedding in String Theory?

 \hookrightarrow Early-universe: Toy models *inspired* by QG (e.g. LQC) vs. Coarse-grain cosmological dynamics from fundamental UV d.o.f.s (e.g. GFT, SGC) \rightarrow Top-down derivation of (early-universe) cosmology from full QG!

Administration

 \hookrightarrow Inflation: An early phase of accelerated expansion.

 \checkmark UV-completion? Resolving the big bang singularity? Initial conditions?

Derivation from fundamental physics? Embedding in String Theory?

 \hookrightarrow Early-universe: Toy models *inspired* by QG (e.g. LQC) vs. Coarse-grain cosmological dynamics from fundamental UV d.o.f.s (e.g. GFT, SGC) \rightarrow Top-down derivation of (early-universe) cosmology from full QG!

 \checkmark Solution to standard cosmological puzzles \Rightarrow Falsifiable predictions for the early universe.

 $\mathcal{A} = \{ \mathcal{A} \mid \mathcal{A} \in \mathcal{A} \text{ and } \mathcal{A} \in \mathcal{A} \}$

 \hookrightarrow Inflation: An early phase of accelerated expansion.

 \sqrt{UV} -completion? Resolving the big bang singularity? Initial conditions?

Derivation from fundamental physics? Embedding in String Theory?

 \hookrightarrow Early-universe: Toy models *inspired* by QG (e.g. LQC) vs. Coarse-grain cosmological dynamics from fundamental UV d.o.f.s (e.g. GFT, SGC) \rightarrow Top-down derivation of (early-universe) cosmology from full QG!

 \checkmark Solution to standard cosmological puzzles \Rightarrow Falsifiable predictions for the early universe.

 \rightarrow New standard model of cosmology \rightarrow No arbitrary tunable parameters!

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus$

 \hookrightarrow Inflation: An early phase of accelerated expansion.

 \checkmark UV-completion? Resolving the big bang singularity? Initial conditions?

Derivation from fundamental physics? Embedding in String Theory?

 \hookrightarrow Early-universe: Toy models *inspired* by QG (e.g. LQC) vs. Coarse-grain cosmological dynamics from fundamental UV d.o.f.s (e.g. GFT, SGC) \rightarrow Top-down derivation of (early-universe) cosmology from full QG!

 \checkmark Solution to standard cosmological puzzles \Rightarrow Falsifiable predictions for the early universe.

 \rightarrow New standard model of cosmology \rightarrow No arbitrary tunable parameters!

Alternate description of the early-universe from *Matrix Theory*.

 QQ

- \hookrightarrow SBB cosmology successfully explains:
	- $\sqrt{}$ Expansion of the Universe: Hubble Law
	- $\sqrt{}$ Existence of the CMB
	- \checkmark Abundance of light elements: BBN

4 17 18

医单向子宫

 QQ

- \hookrightarrow SBB cosmology successfully explains:
	- $\sqrt{}$ Expansion of the Universe: Hubble Law
	- $\sqrt{}$ Existence of the CMB
	- \checkmark Abundance of light elements: BBN

 \hookrightarrow Shortcomings of SBB cosmology (extreme initial fine-tuning) [Baumann, 2009]:

- Horizon problem
- Flatness problem
- Singularity problem

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

 \hookrightarrow Shortcomings of SBB cosmology (extreme initial fine-tuning) [Baumann, 2009]:

- Horizon problem
- Flatness problem
- Singularity problem

B

 QQ

 \hookrightarrow The wish-list of an early-universe cosmologist:

- Solution to the standard horizon problem \Leftarrow Hubble radius smaller than causal horizon is all that is needed. [Brandenberger, 2011]
- \bullet Solution to the standard flatness problem \Leftarrow Spatially flat universe.
- \bullet Origin of structure \Leftarrow Scale invariant power spectrum of adiabatic perturbations. [Sunyaev & Zel'Dovich; Peebles & Yu, 1970]
- Singularity-resolution \Leftarrow Derivation from a fundamental quantum gravity theory.

 $\mathcal{A} = \{ \mathcal{A} \mid \mathcal{A} \in \mathcal{A} \text{ and } \mathcal{A} \in \mathcal{A} \}$

 \hookrightarrow The wish-list of an early-universe cosmologist:

- \bullet Solution to the standard horizon problem \Leftarrow Hubble radius smaller than causal horizon is all that is needed. [Brandenberger, 2011]
- Solution to the standard flatness problem \Leftarrow Spatially flat universe.
- \bullet Origin of structure \Leftarrow Scale invariant power spectrum of adiabatic perturbations. [Sunyaev & Zel'Dovich; Peebles & Yu, 1970]
- Singularity-resolution \Leftarrow Derivation from a fundamental quantum \bullet gravity theory.

Photo credit: P. Adshead

Swampland implies short-lived meta-stable dS vacua can exist ⇒ Consistent with low-scale models of inflation.

 \leftarrow \Box

 $\leftarrow \exists \rightarrow$

 \equiv

Photo credit: S. Shandera

Swampland implies short-lived meta-stable dS vacua can exist ⇒ Consistent with low-scale models of inflation.

メロト メタト メモト メモト

[Bedroya, Brandenberger, LoVerde, Vafa, 2019]

Swampland implies short-lived meta-stable dS vacua can exist ⇒ Consistent with low-scale models of inflation.

 \checkmark What is the origin of the inflaton?

メロト メタト メミト メミト

È

 \checkmark What is the origin of the inflaton?

 \checkmark End state of QG \Rightarrow Initial state for inflation? Deviations from BD? Observable consequences?

 \leftarrow \Box \rightarrow

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

Þ

 \checkmark What is the origin of the inflaton?

 \checkmark End state of QG \Rightarrow Initial state for inflation? Deviations from BD? Observable consequences?

 \checkmark Inflation as an EFT of simple scalar dofs with higher order terms added as one goes back in time might not be the final picture. Difficulty of embedding (quasi)-dS in String Theory \Rightarrow Need to go beyond EFT!

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

 \checkmark What is the origin of the inflaton?

 \checkmark End state of QG \Rightarrow Initial state for inflation? Deviations from BD? Observable consequences?

 \checkmark Inflation as an EFT of simple scalar dofs with higher order terms added as one goes back in time might not be the final picture. Difficulty of embedding (quasi)-dS in String Theory \Rightarrow Need to go beyond EFT!

 \checkmark Evidence from calculations of QFT on accelerating spacetimes \Rightarrow Entanglement entropy of cosmological perturbations & the second law limits inflationary phase from the observed reheating entropy.

[S.B., Alaryani, & Brandenberger, PRD 2020]

 \hookrightarrow For a consistent realization of inflation, it has to be derived from a UV-complete theory going beyond simple EFT!

 (0.125×10^{-14})

 \checkmark What is the origin of the inflaton?

 \checkmark End state of QG \Rightarrow Initial state for inflation? Deviations from BD? Observable consequences?

 $\sqrt{\ }$ Inflation as an EFT of simple scalar dofs with higher order terms added as one goes back in time might not be the final picture. Difficulty of embedding (quasi)-dS in String Theory \Rightarrow Need to go beyond EFT!

 \checkmark Evidence from calculations of QFT on accelerating spacetimes \Rightarrow Entanglement entropy of cosmological perturbations & the second law limits inflationary phase from the observed reheating entropy.

[S.B., Alaryani, & Brandenberger, PRD 2020]

 \hookrightarrow For a consistent realization of inflation, it has to be derived from a UV-complete theory going beyond simple EFT!

Symmetries of QG, e.g., String Dualities, can play a pivotal role in this! New symmetries (T-duality) \Leftrightarrow New states (Winding modes)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Þ

Alternatives

- \hookrightarrow Alternate descriptions of early-universe cosmology:
	- **•** Examples: *String Gas Cosmology* [Brandenberger & Vafa, 1989], *Ekpyrotic* bounce [Khoury, Ovrut, Steinhardt & Turok, 2001], Early phase of topological $gravity$ [Agrawal, Gukov, Obied & Vafa, 2020], CPT -symmetric universe [Boyle & Turok, 2018-22], Matter bounce [Brandenberger, Wands, Wilson-Ewing, Cai & Wilson-Ewing, \dots , , \dots

Figure Credit: R. Brandenberger

 QQ

 \hookrightarrow The BFSS matrix model [Banks, Fischler, Shenker & Susskind, 1997]:

$$
\mathcal{S}_{\mathrm{BFSS}}=\frac{1}{g^2}\int\mathrm{d}t\mathrm{Tr}\left\{\frac{1}{2}\left(D_tX_i\right)^2-\frac{1}{4}\left[X_i,X_j\right]^2+\frac{1}{2}\psi_\alpha D_t\psi_\alpha-\frac{1}{2}\psi_\alpha\gamma^i_{\alpha\beta}\left[X_i,\psi_\beta\right]\right\}
$$

where $D_t \equiv \partial_t - i [A_t, \cdot]$ and $N \times N$ bosonic matrices $A(t), X_i(t)$ $(i = 1, \ldots, d)$ and $\psi_{\alpha}(t)$ $(\alpha = 1, \ldots, p)$.

 \sqrt{Q} uantum Mechanical model of 9 bosonic $U(N)$ matrices and their 16 fermionic superpartners.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

 \hookrightarrow The BFSS matrix model [Banks, Fischler, Shenker & Susskind, 1997]:

$$
\mathcal{S}_{\mathrm{BFSS}}=\frac{1}{g^2}\int\mathrm{d}t\mathrm{Tr}\left\{\frac{1}{2}\left(D_tX_i\right)^2-\frac{1}{4}\left[X_i,X_j\right]^2+\frac{1}{2}\psi_\alpha D_t\psi_\alpha-\frac{1}{2}\psi_\alpha\gamma^i_{\alpha\beta}\left[X_i,\psi_\beta\right]\right\}
$$

where $D_t \equiv \partial_t - i [A_t, \cdot]$ and $N \times N$ bosonic matrices $A(t)$, $X_i(t)$ $(i = 1, \ldots, d)$ and $\psi_{\alpha}(t)$ $(\alpha = 1, \ldots, p)$.

 $\sqrt{\Omega}$ Quantum Mechanical model of 9 bosonic $U(N)$ matrices and their 16 fermionic superpartners.

,→ The IKKT matrix model [Ishibashi, Kawai, Kitazawa & Tsuchiya, 1997]:

$$
S_{\text{IKKT}} = -\frac{1}{g^2} \text{Tr} \left(\frac{1}{4} \left[A_{\mu}, A_{\nu} \right]^2 + \frac{1}{2} \psi_{\alpha} \left(\mathcal{C} \Gamma^{\mu} \right)_{\alpha \beta} \left[A_{\mu}, \psi_{\beta} \right] \right)
$$

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

 QQ

 \hookrightarrow The BFSS matrix model [Banks, Fischler, Shenker & Susskind, 1997]:

$$
S_{\mathrm{BFSS}} = \frac{1}{g^2} \int \mathrm{d}t \mathrm{Tr} \left\{ \frac{1}{2} \left(D_t X_i \right)^2 - \frac{1}{4} \left[X_i, X_j \right]^2 + \frac{1}{2} \psi_\alpha D_t \psi_\alpha - \frac{1}{2} \psi_\alpha \gamma^i_{\alpha\beta} \left[X_i, \psi_\beta \right] \right\}
$$

where $D_t \equiv \partial_t - i [A_t, \cdot]$ and $N \times N$ bosonic matrices $A(t), X_i(t)$ $(i = 1, \ldots, d)$ and $\psi_{\alpha}(t)$ $(\alpha = 1, \ldots, p)$.

 $\sqrt{\Omega}$ Quantum Mechanical model of 9 bosonic $U(N)$ matrices and their 16 fermionic superpartners.

 \hookrightarrow The IKKT matrix model [Ishibashi, Kawai, Kitazawa & Tsuchiya, 1997]:

$$
S_{\rm IKKT}=-\frac{1}{g^2}{\rm Tr}\left(\frac{1}{4}\left[A_\mu,A_\nu\right]^2+\frac{1}{2}\psi_\alpha\left({\cal C}\Gamma^\mu\right)_{\alpha\beta}\left[A_\mu,\psi_\beta\right]\right)
$$

 \rightarrow BFSS (IKKT) model is a non-perturbative proposal for M-theory (IIB superstring theory) \rightarrow Matrix regularization of supermembrane world volume action (Schild-gauge world sheet action). [Hoppe ...]

イロト イ団 トイ ミト イモトー

 QQ

 \hookrightarrow The IKKT matrix model [Ishibashi, Kawai, Kitazawa & Tsuchiya, 1997]:

$$
S_{\rm IKKT}=-\frac{1}{g^2}{\rm Tr}\left(\frac{1}{4}\left[A_{\mu},A_{\nu}\right]^2+\frac{1}{2}\psi_{\alpha}\left({\cal C}\Gamma^{\mu}\right)_{\alpha\beta}\left[A_{\mu},\psi_{\beta}\right]\right)
$$

 \rightarrow BFSS (IKKT) model is a non-perturbative proposal for M-theory (IIB superstring theory) \rightarrow Matrix regularization of supermembrane world volume action (Schild-gauge world sheet action). [Hoppe ...]

 $\sqrt{\frac{S}}$ Spacetime *emerges* from eigenvalue distribution!

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

 \hookrightarrow The IKKT matrix model [Ishibashi, Kawai, Kitazawa & Tsuchiya, 1997]:

$$
S_{\rm IKKT}=-\frac{1}{g^2}{\rm Tr}\left(\frac{1}{4}\left[A_\mu,A_\nu\right]^2+\frac{1}{2}\psi_\alpha\left({\cal C}\Gamma^\mu\right)_{\alpha\beta}\left[A_\mu,\psi_\beta\right]\right)
$$

 \rightarrow BFSS (IKKT) model is a non-perturbative proposal for M-theory (IIB superstring theory) \rightarrow Matrix regularization of supermembrane world volume action (Schild-gauge world sheet action). [Hoppe . . .]

 $\sqrt{\frac{1}{\sqrt{\pi}}}$ Spacetime *emerges* from eigenvalue distribution!

 $\sqrt{\frac{1}{\pi}}$ Price of coarse-graining cosmology from abstract matrix dofs rewared by direct connection to $ST \Rightarrow$ No abundance of free parameters! Beyond 4d toy-models in ST. String dualities expected to play a pivotal role.

ARKATA ATA

 \hookrightarrow The IKKT matrix model [Ishibashi, Kawai, Kitazawa & Tsuchiya, 1997]:

$$
S_{\mathrm{IKKT}}=-\frac{1}{g^{2}}\mathrm{Tr}\left(\frac{1}{4}\left[A_{\mu},A_{\nu}\right]^{2}+\frac{1}{2}\psi_{\alpha}\left(\mathcal{C}\Gamma^{\mu}\right)_{\alpha\beta}\left[A_{\mu},\psi_{\beta}\right]\right)
$$

 \rightarrow BFSS (IKKT) model is a non-perturbative proposal for M-theory (IIB superstring theory) \rightarrow Matrix regularization of supermembrane world volume action (Schild-gauge world sheet action). [Hoppe ...]

 $\sqrt{\frac{S}}$ Spacetime *emerges* from eigenvalue distribution!

 $\sqrt{\frac{1}{\pi}}$ Price of coarse-graining cosmology from abstract matrix dofs rewared by direct connection to $ST \Rightarrow No$ abundance of free parameters! Beyond 4d toy-models in ST. String dualities expected to play a pivotal role.

 \leftrightarrow A consistent, principled top-down approach to early-universe cosmology with the promise of rich phenomenology.

- No Fock-space EFT description: No cosmological constant problem!
- UV-complete: Eigenvalues never become trivial ⇒ No singularities!

 (0.125×10^{-14})

[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . .]

↔ Lorentzian IKKT model: Z ~ ∫dAdΨ е^{*iS*икт}

 \checkmark Diagonalize $A_0: \alpha_1 < \ldots < \alpha_N$.

✓ Define time via *coarse-graining*:

$$
t(\nu) := \frac{1}{n} \sum_{i=1}^{n} \alpha_{\nu+i}, \quad \nu = 1, ..., N - n
$$

 \sqrt{N} *Non-trivial* to obtain dynamical band-diagonal structure! \rightarrow Time-dep $n \times n$ spatial matrices: $(\bar{A}_{i})_{I,J}(t(\nu)) := (A_{i})_{\nu+I,\nu+J}$

[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . .]

- \hookrightarrow Lorentzian IKKT model: Z ~ ∫dAdΨ е^{*iS*икт}
- \checkmark Numerical results show SSB $SO(9) \to SO(3)$ at some t_c .

[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . .]

- ↔ Lorentzian IKKT model: Z ~ ∫ dAdΨ е^{*iS*икт}
- \checkmark Numerical results show SSB $SO(9) \to SO(3)$ at some t_c .

 \hookrightarrow *Emergence* of 3 large spatial dimensions:

Extent of a given spatial dimension parameter: $x_i^2(t):=\Big\langle\,\frac{1}{t}\Big\vert$ $\frac{1}{n}$ Tr $\bar{A}_i(t)^2$

 \rightarrow Total extent of space parameter: $R^2(t) = \sum_{i=1}^{9} x_i^2(t)$

[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . .]

 \checkmark Numerical results show SSB $SO(9) \to SO(3)$ at some t_c .

4 17 18

B

 $f(\overline{P})$ \rightarrow $f(\overline{P})$ \rightarrow $f(\overline{P})$

[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . .]

- \checkmark Numerical results show SSB $SO(9) \to SO(3)$ at some t_c .
- $\sqrt{}$ Qualitatively similar to dynamical mechanism of string gas cosmology.

 \triangleright \rightarrow \exists \triangleright \rightarrow \exists \rightarrow

[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . .]

- \checkmark Numerical results show SSB $SO(9) \to SO(3)$ at some t_c .
- Qualitatively similar to dynamical mechanism of *string gas cosmology*.

 \rightarrow Recent analytical evidence of SSB in the Euclidean BFSS model using Gaussian expansion method. Also works for IKKT model.

[S.B., Brandenberger & Laliberté, 2209.01255 (EPJC); Laliberté & S.B., 2304.10509 (JHEP)]

[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . .]

- \checkmark Numerical results show SSB $SO(9) \to SO(3)$ at some t_c .
- $\sqrt{}$ Qualitatively similar to dynamical mechanism of *string gas cosmology*.

 \rightarrow Recent analytical evidence of SSB in the Euclidean BFSS model using Gaussian expansion method. Also works for IKKT model.

[S.B., Brandenberger & Laliberté, 2209.01255 (EPJC); Laliberté & S.B., 2304.10509 (JHEP)]

 $\sqrt{\ }$ Preliminary numerical results do not indicate that we have exponentially expanding space (not a microscopic model of inflation) but nevertheless an alternate UV-complete (singularity-free) model of the early universe.

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B}$

[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . .]

- \checkmark Numerical results show SSB $SO(9) \to SO(3)$ at some t_c .
- $\sqrt{}$ Qualitatively similar to dynamical mechanism of string gas cosmology.

 \rightarrow Recent analytical evidence of SSB in the Euclidean BFSS model using Gaussian expansion method. Also works for IKKT model.

[S.B., Brandenberger & Laliberté, 2209.01255 (EPJC); Laliberté & S.B., 2304.10509 (JHEP)]

 \checkmark Preliminary numerical results do not indicate that we have exponentially expanding space (not a microscopic model of inflation) but nevertheless an alternate UV-complete (singularity-free) model of the early universe.

 \sqrt{N} Non-geometric phase preceding SSB gives way to standard big bang $cosmology \rightarrow Late-time behaviour$ indicate radiation-dominated era $a(\eta) \sim \eta$. [S.B., Brandenberger & Laliberté, 2206.12468 (JHEP)]

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A}$

[Aoki, Hirasawa, Ito, Kim, Nishimura, Tsuchiya, . . .]

- \checkmark Numerical results show SSB $SO(9) \to SO(3)$ at some t_c .
- $\sqrt{}$ Qualitatively similar to dynamical mechanism of *string gas cosmology*.

 \rightarrow Recent analytical evidence of SSB in the Euclidean BFSS model using Gaussian expansion method. Also works for IKKT model.

[S.B., Brandenberger & Laliberté, 2209.01255 (EPJC); Laliberté & S.B., 2304.10509 (JHEP)]

 \checkmark Preliminary numerical results do not indicate that we have exponentially expanding space (not a microscopic model of inflation) but nevertheless an alternate UV-complete (singularity-free) model of the early universe.

 \sqrt{N} Non-geometric phase preceding SSB gives way to standard big bang $cosmology \rightarrow Late-time behaviour$ indicate radiation-dominated era $a(\eta) \sim \eta$. [S.B., Brandenberger & Laliberté, 2206.12468 (JHEP)]

Takeaway: A $(3 + 1)$ -d universe emerges *dynamically* from non-perturbative (matrix model) description of superstring theory

[S.B., Brandenberger & Laliberté, 2206.12468 (JHEP)]

 \hookrightarrow Emergent time identified from the diagonal elements of A_0 matrix, ordered as $A_0 = \text{diag}(t_1, \ldots, t_N)$ with $t_i > t_j$ for $i > j$.

 \hookrightarrow In the diagonal A_0 basis, the eigenvalues of the A_i matrices decay when moving away from the diagonal \Rightarrow Band-diagonal structure.

-
-
-
- \checkmark Continuous and infinite extent of space when $N \to \infty$!

 \hookrightarrow Emergent metric: $g_{ij}(n,t) = A(t) \delta_{ij}$, Assumption: $SO(3)$ symmetry.

[S.B., Brandenberger & Laliberté, 2206.12468 (JHEP)]

 \hookrightarrow Emergent time identified from the diagonal elements of A_0 matrix, ordered as $A_0 = \text{diag}(t_1, \ldots, t_N)$ with $t_i > t_j$ for $i > j$.

 \hookrightarrow In the diagonal A_0 basis, the eigenvalues of the A_i matrices decay when moving away from the diagonal \Rightarrow Band-diagonal structure.

- \checkmark t_{max} ~ \sqrt{N} , and discrete time eigenvalues scale as: $\Delta t \sim 1/\sqrt{N}$.
- $\sqrt{}$ In the $N \rightarrow \infty$ limit, *emergent* continuous and infinite time.
- \checkmark Total physical extent of space: $\ell_{\text{phys}} \sim \sqrt{N}$.
- \checkmark Continuous and infinite extent of space when $N \to \infty$!

 \hookrightarrow Emergent metric: $g_{ij}(n,t) = A(t) \delta_{ij}$, Assumption: $SO(3)$ symmetry.

[S.B., Brandenberger & Laliberté, 2206.12468 (JHEP)]

 \hookrightarrow Emergent time identified from the diagonal elements of A_0 matrix, ordered as $A_0 = \text{diag}(t_1, \ldots, t_N)$ with $t_i > t_j$ for $i > j$.

 \hookrightarrow In the diagonal A_0 basis, the eigenvalues of the A_i matrices decay when moving away from the diagonal \Rightarrow Band-diagonal structure.

- \checkmark t_{max} ~ \sqrt{N} , and discrete time eigenvalues scale as: $\Delta t \sim 1/\sqrt{N}$.
- $\sqrt{}$ In the $N \rightarrow \infty$ limit, *emergent* continuous and infinite time.
- \checkmark Total physical extent of space: $\ell_{\text{phys}} \sim \sqrt{N}$.
- \checkmark Continuous and infinite extent of space when $N \to \infty$!

 \hookrightarrow Emergent metric: $g_{ij}(n, t) = A(t) \delta_{ij}$, Assumption: SO(3) symmetry.

 \overline{AB}) \overline{AB}) \overline{AB}

[S.B., Brandenberger & Laliberté, 2206.12468 (JHEP)]

 \hookrightarrow Emergent time identified from the diagonal elements of A_0 matrix, ordered as $A_0 = \text{diag}(t_1, \ldots, t_N)$ with $t_i > t_j$ for $i > j$.

 \hookrightarrow In the diagonal A_0 basis, the eigenvalues of the A_i matrices decay when moving away from the diagonal \Rightarrow Band-diagonal structure.

- \checkmark t_{max} ~ \sqrt{N} , and discrete time eigenvalues scale as: $\Delta t \sim 1/\sqrt{N}$.
- $\sqrt{}$ In the $N \rightarrow \infty$ limit, *emergent* continuous and infinite time.
- \checkmark Total physical extent of space: $\ell_{\text{phys}} \sim \sqrt{N}$.
- \checkmark Continuous and infinite extent of space when $N \to \infty$!

 \hookrightarrow Emergent metric: $g_{ij}(n, t) = A(t) \delta_{ij}$, Assumption: SO(3) symmetry.

No Flatness Problem! Independent of isotropy assumption.

\hookrightarrow Consider a thermal state in the BFSS model.

 \rightarrow Start with the Euclidean BFSS model and consider its compactification on a thermal circle: BFSS $\xrightarrow{T\rightarrow\infty}$ IKKT (natural to assume thermal state)

ARKATA ATA

 \hookrightarrow Consider a thermal state in the BFSS model.

 \rightarrow Start with the Euclidean BFSS model and consider its compactification on a thermal circle: BFSS $\xrightarrow{T\rightarrow\infty}$ IKKT (natural to assume thermal state)

$$
\rightsquigarrow \mathcal{S}_{\mathrm{BFSS}}(\beta) = \frac{1}{2g^2} \int_{0}^{\beta} \mathrm{d}t \,\mathrm{Tr} \left\{ \left(D_t X_i\right)^2 - \frac{1}{2} \left[X_i, X_j\right] + \mathrm{fermions} \right\}, \ \ \beta = 1/\mathcal{T}.
$$

 \hookrightarrow Consider a thermal state in the BFSS model.

 \rightarrow Start with the Euclidean BFSS model and consider its compactification on a thermal circle: BFSS $\xrightarrow{T\rightarrow\infty}$ IKKT (natural to assume thermal state)

$$
\rightsquigarrow \mathcal{S}_{\mathrm{BFSS}}(\beta) = \frac{1}{2g^2} \int\limits_0^\beta \mathrm{d}t \,\mathrm{Tr}\left\{ \left(D_t X_i\right)^2 - \frac{1}{2}\left[X_i, X_j\right] + \mathrm{fermions} \right\}, \ \ \beta = 1/\mathcal{T}.
$$

 \rightarrow Fourier expand fields as $X_i(t) = \sum X_i^n e^{in\omega t}$ in Matsubara frequencies n $\omega = 2\pi T$.

to derive cosmology $(T \to 1/T)$. We find the same background and a scale invariant spectrum, although with slight $\mathcal{O}(1)$ factors different in the amplitude. [Laliberté & S.B., 2304.10509 (JHEP)]

 \hookrightarrow Consider a thermal state in the BFSS model.

 \rightarrow Start with the Euclidean BFSS model and consider its compactification on a thermal circle: BFSS $\xrightarrow{T\rightarrow\infty}$ IKKT (natural to assume thermal state)

$$
\rightsquigarrow \mathcal{S}_{\mathrm{BFSS}}(\beta) = \frac{1}{2g^2} \int\limits_0^\beta \mathrm{d}t \,\mathrm{Tr}\left\{ \left(D_t X_i\right)^2 - \frac{1}{2}\left[X_i, X_j\right] + \mathrm{fermions} \right\}, \ \ \beta = 1/\mathcal{T}.
$$

 \rightarrow Fourier expand fields as $X_i(t) = \sum X_i^n e^{in\omega t}$ in Matsubara frequencies n $\omega = 2\pi T$.

 $\hookrightarrow S_{\text{BFSS}} = S_0 + S_{\text{kin}} + S_{\text{int}}, \text{ where } S_0 =: S_{\text{IKKT}}^{\text{bosonic}} \text{ (zero-mode action)}.$

to derive cosmology $(T \to 1/T)$. We find the same background and a scale invariant spectrum, although with slight $\mathcal{O}(1)$ factors different in the amplitude. [Laliberté & S.B., 2304.10509 (JHEP)]

 \hookrightarrow Consider a thermal state in the BFSS model.

 \rightarrow Start with the Euclidean BFSS model and consider its compactification on a thermal circle: BFSS $\xrightarrow{T\rightarrow\infty}$ IKKT (natural to assume thermal state)

$$
\rightsquigarrow \mathcal{S}_{\mathrm{BFSS}}(\beta) = \frac{1}{2g^2} \int_{0}^{\beta} \mathrm{d}t \,\mathrm{Tr} \left\{ \left(D_t X_i\right)^2 - \frac{1}{2} \left[X_i, X_j\right] + \mathrm{fermions} \right\}, \ \ \beta = 1/\mathcal{T}.
$$

 \rightarrow Fourier expand fields as $X_i(t) = \sum_{n} X_i^n e^{in\omega t}$ in Matsubara frequencies $\omega = 2\pi T$.

 $\hookrightarrow S_{\text{BFSS}} = S_0 + S_{\text{kin}} + S_{\text{int}}, \text{ where } S_0 =: S_{\text{IKKT}}^{\text{bosonic}} \text{ (zero-mode action)}.$

 \checkmark One can just as well start with a thermal state in the IKKT model (by compactifying the A_0 matrix through the method of images) and use that to derive cosmology $(T \to 1/T)$. We find the same background and a scale invariant spectrum, although with slight $\mathcal{O}(1)$ factors different in the amplitude. [Laliberté & S.B., 2304.10509 (JHEP)]

 $(0 \times 40) \times 10$

 \hookrightarrow To confront with observations, need cosmological perturbations: go beyond IKKT model (include $\mathcal{O}(1/T)$ corrections for the thermal state expectation values).

-
-

$$
C^{00}_{00} = \frac{T^2}{R^6} C_V, \t C_V = \left(\frac{\partial E}{\partial T}\right)_V
$$

$$
C^{ij}_{\;ij} = \alpha \frac{T}{R^2} \frac{\partial \tilde{p}}{\partial R}, \t \tilde{p} = -\frac{1}{R^3} \frac{\partial F}{\partial \ln R}
$$

 $1.7.147$

SATE AT ALC:

 \hookrightarrow To confront with observations, need cosmological perturbations: go beyond IKKT model (include $\mathcal{O}(1/T)$ corrections for the thermal state expectation values).

 $\sqrt{\ }$ Justified to use Einstein's equations since we are considering IR modes (as in String Gas) with the BFSS producing the source term.

-
-

$$
C^{00}_{00} = \frac{T^2}{R^6} C_V, \t C_V = \left(\frac{\partial E}{\partial T}\right)_V
$$

$$
C^{ij}_{ij} = \alpha \frac{T}{R^2} \frac{\partial \tilde{p}}{\partial R}, \t \tilde{p} = -\frac{1}{R^3} \frac{\partial F}{\partial \ln R}
$$

and an

 \mathcal{A} . The first set \mathcal{B}

 \hookrightarrow To confront with observations, need cosmological perturbations: go beyond IKKT model (include $\mathcal{O}(1/T)$ corrections for the thermal state expectation values).

 $\sqrt{\ }$ Justified to use Einstein's equations since we are considering IR modes (as in String Gas) with the BFSS producing the source term.

Thermal state formalism: [Nayeri, Brandenberger & Vafa, 2005]

- \rightsquigarrow Tensor modes: $\langle |h(k)|^2 \rangle = M_{\text{Pl}}^{-4} k^{-4} \langle \delta T_j^i(k) \delta T_j^i(k) \rangle =: C^{ij}{}_{ij}, i \neq j.$
-

$$
C^{00}_{000} = \frac{T^2}{R^6} C_V, \t C_V = \left(\frac{\partial E}{\partial T}\right)_V
$$

$$
C^{ij}_{\;ij} = \alpha \frac{T}{R^2} \frac{\partial \tilde{p}}{\partial R}, \t \tilde{p} = -\frac{1}{R^3} \frac{\partial F}{\partial \ln R}
$$

 \hookrightarrow To confront with observations, need cosmological perturbations: go beyond IKKT model (include $\mathcal{O}(1/T)$ corrections for the thermal state expectation values).

 $\sqrt{\ }$ Justified to use Einstein's equations since we are considering IR modes (as in String Gas) with the BFSS producing the source term.

Thermal state formalism: [Nayeri, Brandenberger & Vafa, 2005]

 \hookrightarrow Thermal fluctuations considered in *String gas cosmology* and *Warm* Inflation. Unlike in standard inflation or ekpyrosis, perturbations not sourced by quantum vacuum fluctuations.

- \rightsquigarrow Tensor modes: $\langle |h(k)|^2 \rangle = M_{\text{Pl}}^{-4} k^{-4} \langle \delta T_j^i(k) \delta T_j^i(k) \rangle =: C^{ij}{}_{ij}, i \neq j.$
-

$$
C^{00}_{00} = \frac{T^2}{R^6} C_V, \t C_V = \left(\frac{\partial E}{\partial T}\right)_V
$$

$$
C^{ij}_{\;ij} = \alpha \frac{T}{R^2} \frac{\partial \tilde{p}}{\partial R}, \t \tilde{p} = -\frac{1}{R^3} \frac{\partial F}{\partial \ln R}
$$

 \hookrightarrow To confront with observations, need cosmological perturbations: go beyond IKKT model (include $\mathcal{O}(1/T)$ corrections for the thermal state expectation values).

 $\sqrt{\ }$ Justified to use Einstein's equations since we are considering IR modes (as in String Gas) with the BFSS producing the source term.

Thermal state formalism: [Nayeri, Brandenberger & Vafa, 2005]

 \hookrightarrow Thermal fluctuations considered in *String gas cosmology* and *Warm* Inflation. Unlike in standard inflation or ekpyrosis, perturbations not sourced by quantum vacuum fluctuations.

 \rightsquigarrow Scalar modes: $\langle |\Phi(k)|^2 \rangle = M_{\rm Pl}^{-4} k^{-4} \langle \delta T_0^0(k) \delta T_0^0(k) \rangle =: C^{00}_{000}$ \rightarrow Tensor modes: $\langle |h(k)|^2 \rangle = M_{\text{Pl}}^{-4} k^{-4} \langle \delta T_j^i(k) \delta T_j^i(k) \rangle =: C^{ij}{}_{ij}, i \neq j.$

$$
C^{00}_{00} = \frac{T^2}{R^6} C_V, \t C_V = \left(\frac{\partial E}{\partial T}\right)_V
$$

$$
C^{ij}_{\;ij} = \alpha \frac{T}{R^2} \frac{\partial \tilde{p}}{\partial R}, \t \tilde{p} = -\frac{1}{R^3} \frac{\partial F}{\partial \ln R}
$$

 \hookrightarrow To confront with observations, need cosmological perturbations: go beyond IKKT model (include $\mathcal{O}(1/T)$ corrections for the thermal state expectation values).

 $\sqrt{\ }$ Justified to use Einstein's equations since we are considering IR modes (as in String Gas) with the BFSS producing the source term.

Thermal state formalism: [Nayeri, Brandenberger & Vafa, 2005]

 \hookrightarrow Thermal fluctuations considered in *String gas cosmology* and *Warm* Inflation. Unlike in standard inflation or ekpyrosis, perturbations not sourced by quantum vacuum fluctuations.

 \rightsquigarrow Scalar modes: $\langle |\Phi(k)|^2 \rangle = M_{\rm Pl}^{-4} k^{-4} \langle \delta T_0^0(k) \delta T_0^0(k) \rangle =: C^{00}_{000}$ \rightarrow Tensor modes: $\langle |h(k)|^2 \rangle = M_{\text{Pl}}^{-4} k^{-4} \langle \delta T_j^i(k) \delta T_j^i(k) \rangle =: C^{ij}{}_{ij}, i \neq j.$

 \hookrightarrow For a thermal state, perturbations are sourced by (box of side R):

$$
C^{00}_{00} = \frac{T^2}{R^6} C_V, \qquad C_V = \left(\frac{\partial E}{\partial T}\right)_V
$$

$$
C^{ij}_{ij} = \alpha \frac{T}{R^2} \frac{\partial \tilde{p}}{\partial R}, \qquad \tilde{p} = -\frac{1}{R^3} \frac{\partial F}{\partial \ln R}
$$

 \hookrightarrow Calculate thermodynamic quantities in the *Euclidean BFSS model* and expand in the high T limit (dimensionless expansion parameter: $\sqrt{g^2 N/T^3}$)

$$
\mathcal{F}(R,\beta) = \frac{3N^2}{4\beta} \left[\chi_2 \ln \beta - \frac{2}{3} \left(\frac{d-1}{12} - \frac{\rho}{8} \right) \left(N^2 \chi_2 - \frac{N^2}{d} \chi_2 - 4 \right) \chi_1 \beta^{3/2} \right]
$$

 $\sqrt{C_V}$ positive for $d = 3$, $p = 4$ and thermodynamics is well-defined.

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

 \hookrightarrow Calculate thermodynamic quantities in the *Euclidean BFSS model* and expand in the high T limit (dimensionless expansion parameter: $\sqrt{g^2 N/T^3}$)

 $\hookrightarrow S_{\text{BFSS}} = S_0 + S_{\text{kin}} + S_{\text{int}}$, where $S_0 =: S_{\text{IKKT}}$ (zero-mode action).

$$
\mathcal{F}(R,\beta) = \frac{3N^2}{4\beta} \left[\chi_2 \ln \beta - \frac{2}{3} \left(\frac{d-1}{12} - \frac{\rho}{8} \right) \left(N^2 \chi_2 - \frac{N^2}{d} \chi_2 - 4 \right) \chi_1 \beta^{3/2} \right]
$$

 $\sqrt{C_V}$ positive for $d = 3$, $p = 4$ and thermodynamics is well-defined.

Takeuchi, 2007; S.B., Brandenberger & Laliberté, 2107.11512 $\begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix}$

 \hookrightarrow Calculate thermodynamic quantities in the *Euclidean BFSS model* and expand in the high T limit (dimensionless expansion parameter: $\sqrt{g^2 N/T^3}$)

$$
\hookrightarrow \mathcal{S}_{\mathrm{BFSS}} = \mathcal{S}_0 + \mathcal{S}_{\mathrm{kin}} + \mathcal{S}_{\mathrm{int}}, \ \ \mathrm{where} \ \mathcal{S}_0 =: \mathcal{S}_{\mathrm{IKKT}} \ \mathrm{(zero-mode \ action)}.
$$

 \hookrightarrow Free energy up to *next-to-leading* order (IKKT + corrections):

$$
\mathcal{F}(R,\beta) = \frac{3N^2}{4\beta} \left[\chi_2 \ln \beta - \frac{2}{3} \left(\frac{d-1}{12} - \frac{\rho}{8} \right) \left(N^2 \chi_2 - \frac{N^2}{d} \chi_2 - 4 \right) \chi_1 \beta^{3/2} \right]
$$

$$
\chi_1 := \left\langle \frac{1}{N} \text{Tr} (A_i)^2 \right\rangle_{\text{IKKT}} \propto R^2, \quad \chi_2 := \left\langle \frac{1}{N} \text{Tr} (F_{ij})^2 \right\rangle_{\text{IKKT}} \text{ evaluated in } S_0.
$$

 \checkmark Use approximations to evaluate higher-order moments of zero-modes.

 $\sqrt{C_V}$ positive for $d = 3$, $p = 4$ and thermodynamics is well-defined.

Takeuchi, 2007; S.B., Brandenberger & Laliberté, 2107.11512 **Quality of Alixar Elizabeth**

 \hookrightarrow Calculate thermodynamic quantities in the *Euclidean BFSS model* and expand in the high T limit (dimensionless expansion parameter: $\sqrt{g^2 N/T^3}$)

$$
\hookrightarrow \mathcal{S}_{\mathrm{BFSS}} = \mathcal{S}_0 + \mathcal{S}_{\mathrm{kin}} + \mathcal{S}_{\mathrm{int}}, \ \ \mathrm{where} \ \mathcal{S}_0 =: \mathcal{S}_{\mathrm{IKKT}} \ \mathrm{(zero-mode \ action)}.
$$

 \hookrightarrow Free energy up to *next-to-leading* order (IKKT + corrections):

$$
\mathcal{F}(R,\beta) = \frac{3N^2}{4\beta} \left[\chi_2 \ln \beta - \frac{2}{3} \left(\frac{d-1}{12} - \frac{\rho}{8} \right) \left(N^2 \chi_2 - \frac{N^2}{d} \chi_2 - 4 \right) \chi_1 \beta^{3/2} \right]
$$

$$
\chi_1 := \left\langle \frac{1}{N} \text{Tr} (A_i)^2 \right\rangle_{\text{IKKT}} \propto R^2, \quad \chi_2 := \left\langle \frac{1}{N} \text{Tr} (F_{ij})^2 \right\rangle_{\text{IKKT}} \text{ evaluated in } S_0.
$$

 \checkmark Integrate over *non-zero* modes alone to arrive at above results since we want to expand around the IKKT background. After integrating out non-zero modes using perturbation theory, the leftover integration over the zero modes can be thought of as taking the expectation value of connected Green's functions using the bosonic part of the IKKT action.

 \checkmark Use approximations to evaluate higher-order moments of zero-modes.

 $\sqrt{C_V}$ positive for $d = 3$, $p = 4$ and thermodynamics is well-defined.

Takeuchi, 2007; S.B., Brandenberger & Laliberté, 2107.11512 **Quality of Album (Bioteration**)

 \hookrightarrow Calculate thermodynamic quantities in the *Euclidean BFSS model* and expand in the high T limit (dimensionless expansion parameter: $\sqrt{g^2 N/T^3}$)

$$
\hookrightarrow \mathcal{S}_{\mathrm{BFSS}} = \mathcal{S}_0 + \mathcal{S}_{\mathrm{kin}} + \mathcal{S}_{\mathrm{int}}, \ \ \mathrm{where} \ \mathcal{S}_0 =: \mathcal{S}_{\mathrm{IKKT}} \ \mathrm{(zero-mode \ action)}.
$$

 \hookrightarrow Free energy up to *next-to-leading* order (IKKT + corrections):

$$
\mathcal{F}(R,\beta) = \frac{3N^2}{4\beta} \left[\chi_2 \ln \beta - \frac{2}{3} \left(\frac{d-1}{12} - \frac{\rho}{8} \right) \left(N^2 \chi_2 - \frac{N^2}{d} \chi_2 - 4 \right) \chi_1 \beta^{3/2} \right]
$$

$$
\chi_1 := \left\langle \frac{1}{N} \text{Tr} (A_i)^2 \right\rangle_{\text{IKKT}} \propto R^2, \quad \chi_2 := \left\langle \frac{1}{N} \text{Tr} (F_{ij})^2 \right\rangle_{\text{IKKT}} \text{ evaluated in } S_0.
$$

 \checkmark Integrate over *non-zero* modes alone to arrive at above results since we want to expand around the IKKT background. After integrating out non-zero modes using perturbation theory, the leftover integration over the zero modes can be thought of as taking the expectation value of connected Green's functions using the bosonic part of the IKKT action.

 \checkmark Use approximations to evaluate higher-order moments of zero-modes.

 $\sqrt{C_V}$ positive for $d = 3$, $p = 4$ and thermodynamics is well-defined.

 \hookrightarrow We have all the quantities required C^{00} ₀₀, C^{ij} _{ij} to calculate spectrum of cosmological perturbations in the BFSS thermal state. [Kawahara, Nishimura & Takeuchi, 2007; S.B., Brandenberger & Laliberté, 2107.11512 **[\]](#page-59-0)**

 \hookrightarrow Calculate thermodynamic quantities in the *Euclidean BFSS model* and expand in the high T limit (dimensionless expansion parameter: $\sqrt{g^2 N/T^3}$)

$$
\hookrightarrow \mathcal{S}_{\mathrm{BFSS}} = \mathcal{S}_0 + \mathcal{S}_{\mathrm{kin}} + \mathcal{S}_{\mathrm{int}}, \ \ \mathrm{where} \ \mathcal{S}_0 =: \mathcal{S}_{\mathrm{IKKT}} \ \mathrm{(zero-mode \ action)}.
$$

 \hookrightarrow Free energy up to *next-to-leading* order (IKKT + corrections):

$$
\mathcal{F}(R,\beta) = \frac{3N^2}{4\beta} \left[\chi_2 \ln \beta - \frac{2}{3} \left(\frac{d-1}{12} - \frac{\rho}{8} \right) \left(N^2 \chi_2 - \frac{N^2}{d} \chi_2 - 4 \right) \chi_1 \beta^{3/2} \right]
$$

$$
\chi_1 := \left\langle \frac{1}{N} \text{Tr} (A_i)^2 \right\rangle_{\text{IKKT}} \propto R^2, \quad \chi_2 := \left\langle \frac{1}{N} \text{Tr} (F_{ij})^2 \right\rangle_{\text{IKKT}} \text{ evaluated in } S_0.
$$

 \checkmark Integrate over *non-zero* modes alone to arrive at above results since we want to expand around the IKKT background. After integrating out non-zero modes using perturbation theory, the leftover integration over the zero modes can be thought of as taking the expectation value of connected Green's functions using the bosonic part of the IKKT action.

 \checkmark Use approximations to evaluate higher-order moments of zero-modes.

 $\sqrt{C_V}$ positive for $d = 3$, $p = 4$ and thermodynamics is well-defined.

 \hookrightarrow We have all the quantities required C^{00} ₀₀, C^{ij} _{ij} to calculate spectrum of cosmological perturbations in the BFSS thermal state. [Kawahara, Nishimura & Takeuchi, 2007; S.B., Brandenberger & Laliberté, 2107.11512 [\]](#page-60-0)

 \hookrightarrow Calculate thermodynamic quantities in the *Euclidean BFSS model* and expand in the high T limit (dimensionless expansion parameter: $\sqrt{g^2 N/T^3}$)

$$
\hookrightarrow \mathcal{S}_{\mathrm{BFSS}} = \mathcal{S}_0 + \mathcal{S}_{\mathrm{kin}} + \mathcal{S}_{\mathrm{int}}, \ \ \mathrm{where} \ \mathcal{S}_0 =: \mathcal{S}_{\mathrm{IKKT}} \ \mathrm{(zero-mode \ action)}.
$$

 \hookrightarrow Free energy up to *next-to-leading* order (IKKT + corrections):

$$
\mathcal{F}(R,\beta) = \frac{3N^2}{4\beta} \left[\chi_2 \ln \beta - \frac{2}{3} \left(\frac{d-1}{12} - \frac{\rho}{8} \right) \left(N^2 \chi_2 - \frac{N^2}{d} \chi_2 - 4 \right) \chi_1 \beta^{3/2} \right]
$$

$$
\chi_1 := \left\langle \frac{1}{N} \text{Tr} (A_i)^2 \right\rangle_{\text{IKKT}} \propto R^2, \quad \chi_2 := \left\langle \frac{1}{N} \text{Tr} (F_{ij})^2 \right\rangle_{\text{IKKT}} \text{ evaluated in } S_0.
$$

 \checkmark Integrate over *non-zero* modes alone to arrive at above results since we want to expand around the IKKT background. After integrating out non-zero modes using perturbation theory, the leftover integration over the zero modes can be thought of as taking the expectation value of connected Green's functions using the bosonic part of the IKKT action.

 \checkmark Use approximations to evaluate higher-order moments of zero-modes.

 $\sqrt{C_V}$ positive for $d = 3$, $p = 4$ and thermodynamics is well-defined.

 \hookrightarrow We have all the quantities required C^{00}_{00} , C^{ij}_{ij} to calculate spectrum of cosmological perturbations in the BFSS thermal state. [Kawahara, Nishimura & Takeuchi, 2007; S.B., Brandenberger & Laliberté, 2107.11512 [\]](#page-61-0)

We find scale-invariant spectrum for IR modes of observational interest [S.B., Brandenberger & Laliberté, 2107.11512]

$P_{\zeta} \sim (\ell_{\rm s} M_{\rm Pl})^{-4} \mathcal{O}(1),\;\; P_h \sim \alpha\, (\ell_{\rm s} M_{\rm Pl})$ $\mathsf{-4}\mathcal{O}(1). \qquad \text{SG: } \mathcal{A} \sim \left(\ell_{\text{s}} \mathcal{M}_{\text{Pl}}\right)^{-4}$

We find scale-invariant spectrum for IR modes of observational interest [S.B., Brandenberger & Laliberté, 2107.11512]

$P_{\zeta} \sim (\ell_{\rm s} M_{\rm Pl})^{-4} \mathcal{O}(1),\;\; P_h \sim \alpha\, (\ell_{\rm s} M_{\rm Pl})$ $\hspace{1cm} ^{-4}\mathcal{O}(1). \qquad \mathrm{SG:}\; \mathcal{A}\sim\left(\ell_{\mathrm{s}} M_{\mathrm{Pl}}\right)^{-4}$

We find scale-invariant spectrum for IR modes of observational interest [S.B., Brandenberger & Laliberté, 2107.11512]

 $P_{\zeta} \sim (\ell_{\rm s} M_{\rm Pl})^{-4} \mathcal{O}(1),\;\; P_h \sim \alpha\, (\ell_{\rm s} M_{\rm Pl})$ $\hspace{1cm} ^{-4}\mathcal{O}(1). \qquad \mathrm{SG:}\; \mathcal{A}\sim\left(\ell_{\mathrm{s}} M_{\mathrm{Pl}}\right)^{-4}$

 \hookrightarrow UV-modes for density perturbations have a Poisson spectrum ($\propto k^2$); distinct from inflation but not of (direct) observable consequence. Tensor spectrum only has a scale-invariant part.

 \hookrightarrow The exact time-dependent expansion of χ_1 not required for above result!

We find scale-invariant spectrum for IR modes of observational interest [S.B., Brandenberger & Laliberté, 2107.11512]

 $P_{\zeta} \sim (\ell_{\rm s} M_{\rm Pl})^{-4} \mathcal{O}(1),\;\; P_h \sim \alpha\, (\ell_{\rm s} M_{\rm Pl})$ $\hspace{1cm} ^{-4}\mathcal{O}(1). \qquad \mathrm{SG:}\; \mathcal{A}\sim\left(\ell_{\mathrm{s}} M_{\mathrm{Pl}}\right)^{-4}$

 \hookrightarrow UV-modes for density perturbations have a Poisson spectrum ($\propto k^2$); distinct from inflation but not of (direct) observable consequence. Tensor spectrum only has a scale-invariant part.

 $\sqrt{\ }$ Phenomenologically relevant predictions to appear for tensor-to-scalar ratio ($\alpha \sim$ off-diagonal), abundance of PBHs (UV spectrum), large primordial B-fields (thermal state) and non-Gaussianities (bispectra). Small tilt from next order corrections and due to the SSB phase transition.

 \rightarrow Yet to work out details of the SSB phase transition. Nevertheless can make clear predictions. Similar to reheating phase in inflation.

We find scale-invariant spectrum for IR modes of observational interest [S.B., Brandenberger & Laliberté, 2107.11512]

 $P_{\zeta} \sim (\ell_{\rm s} M_{\rm Pl})^{-4} \mathcal{O}(1),\;\; P_h \sim \alpha\, (\ell_{\rm s} M_{\rm Pl})$ $\hspace{1cm} ^{-4}\mathcal{O}(1). \qquad \mathrm{SG:}\; \mathcal{A}\sim\left(\ell_{\mathrm{s}} M_{\mathrm{Pl}}\right)^{-4}$

 \hookrightarrow UV-modes for density perturbations have a Poisson spectrum ($\propto k^2$); distinct from inflation but not of (direct) observable consequence. Tensor spectrum only has a scale-invariant part.

 $\sqrt{\ }$ Phenomenologically relevant predictions to appear for tensor-to-scalar ratio ($\alpha \sim$ off-diagonal), abundance of PBHs (UV spectrum), large primordial B-fields (thermal state) and non-Gaussianities (bispectra). Small tilt from next order corrections and due to the SSB phase transition.

 \hookrightarrow The exact time-dependent expansion of χ_1 not required for above result!

 \rightarrow Yet to work out details of the SSB phase transition. Nevertheless can make clear predictions. Similar to reheating phase in inflation.

We find scale-invariant spectrum for IR modes of observational interest [S.B., Brandenberger & Laliberté, 2107.11512]

 $P_{\zeta} \sim (\ell_{\rm s} M_{\rm Pl})^{-4} \mathcal{O}(1),\;\; P_h \sim \alpha\, (\ell_{\rm s} M_{\rm Pl})$ $\hspace{1cm} ^{-4}\mathcal{O}(1). \qquad \mathrm{SG:}\; \mathcal{A}\sim\left(\ell_{\mathrm{s}} M_{\mathrm{Pl}}\right)^{-4}$

 \hookrightarrow UV-modes for density perturbations have a Poisson spectrum ($\propto k^2$); distinct from inflation but not of (direct) observable consequence. Tensor spectrum only has a scale-invariant part.

 $\sqrt{\ }$ Phenomenologically relevant predictions to appear for tensor-to-scalar ratio ($\alpha \sim$ off-diagonal), abundance of PBHs (UV spectrum), large primordial B-fields (thermal state) and non-Gaussianities (bispectra). Small tilt from next order corrections and due to the SSB phase transition.

 \hookrightarrow The exact time-dependent expansion of χ_1 not required for above result!

 \rightarrow *Yet* to work out details of the SSB phase transition. Nevertheless can make clear predictions. Similar to reheating phase in inflation.

We find scale-invariant spectrum for IR modes of observational interest [S.B., Brandenberger & Laliberté, 2107.11512]

 $P_{\zeta} \sim (\ell_{\rm s} M_{\rm Pl})^{-4} \mathcal{O}(1),\;\; P_h \sim \alpha\, (\ell_{\rm s} M_{\rm Pl})$ $\hspace{1cm} ^{-4}\mathcal{O}(1). \qquad \mathrm{SG:}\; \mathcal{A}\sim\left(\ell_{\mathrm{s}} M_{\mathrm{Pl}}\right)^{-4}$

 \hookrightarrow UV-modes for density perturbations have a Poisson spectrum ($\propto k^2$); distinct from inflation but not of (direct) observable consequence. Tensor spectrum only has a scale-invariant part.

 $\sqrt{\ }$ Phenomenologically relevant predictions to appear for tensor-to-scalar ratio ($\alpha \sim$ off-diagonal), abundance of PBHs (UV spectrum), large primordial B-fields (thermal state) and non-Gaussianities (bispectra). Small tilt from next order corrections and due to the SSB phase transition.

 \hookrightarrow The exact time-dependent expansion of χ_1 not required for above result!

 \rightarrow *Yet* to work out details of the SSB phase transition. Nevertheless can make clear predictions. Similar to reheating phase in inflation.

 \checkmark Free from swampland constraints \to No landscape of tunable parameters coming from curling up extra dimensions. Not an[yth](#page-68-0)i[ng](#page-70-0)[go](#page-63-0)[e](#page-69-0)[s!](#page-70-0)

How does space emerge from matrices?

 \checkmark Single $U(N)$ matrix QM is known to be equivalent to 2d String Theory.

$$
S = \int \mathrm{d}t \, \mathrm{Tr} \left[(\partial_t M)^2 - V(M) \right]
$$

The collective field has a natural interpretation as a field in a higher dimensional theory [Das & Jevicki]

 $\leftarrow \Xi \rightarrow$

э

How does space emerge from matrices?

 \checkmark Single $U(N)$ matrix QM is known to be equivalent to 2d String Theory.

$$
S = \int \mathrm{d}t \, \mathrm{Tr} \left[(\partial_t M)^2 - V(M) \right]
$$

 \hookrightarrow One can work with the eigenvalues: $M = U^{-1} \text{ diag}(\lambda_i)$ U

The collective field has a natural interpretation as a field in a higher dimensional theory [Das & Jevicki]

э

 \checkmark Single $U(N)$ matrix QM is known to be equivalent to 2d String Theory.

$$
S = \int \mathrm{d}t \, \mathrm{Tr} \left[(\partial_t M)^2 - V(M) \right]
$$

 \hookrightarrow One can work with the eigenvalues: $M = U^{-1} \text{ diag}(\lambda_i)$ U

 \hookrightarrow A natural set of gauge-invariant operators are: $\phi_k = \text{Tr} (e^{ikM})$

 \checkmark Single $U(N)$ matrix QM is known to be equivalent to 2d String Theory.

$$
S = \int \mathrm{d}t \, \mathrm{Tr} \left[(\partial_t M)^2 - V(M) \right]
$$

 \hookrightarrow One can work with the eigenvalues: $M = U^{-1} \text{ diag}(\lambda_i)$ U

 \hookrightarrow A natural set of gauge-invariant operators are: $\phi_k = \text{Tr} (e^{ikM})$

dar

 \checkmark Single $U(N)$ matrix QM is known to be equivalent to 2d String Theory.

$$
S = \int \mathrm{d}t \, \mathrm{Tr} \left[\left(\partial_t M \right)^2 - V(M) \right]
$$

 \hookrightarrow One can work with the eigenvalues: $M = U^{-1} \text{ diag}(\lambda_i)$ U

 \hookrightarrow A natural set of gauge-invariant operators are: $\phi_k = \text{Tr} (e^{ikM})$

• The collective field formalism:

$$
\phi_k = \text{Tr}\left(e^{ikM}\right) = \sum_{i=1}^N e^{ik\lambda_i}
$$

$$
\phi(x) = \int \frac{dk}{2\pi} e^{-ikx} \text{Tr}\left(e^{ikM}\right) = \text{Tr}\left(\delta(x - M)\right) = \sum_{i=1}^N \delta(x - \lambda_i)
$$

The collective field has a natural interpretation [as](#page-73-0) [a fi](#page-75-0)[e](#page-69-0)[l](#page-70-0)[d](#page-76-0) [i](#page-77-0)[n a](#page-0-0) [hi](#page-88-0)[gh](#page-0-0)[er](#page-88-0)
Emergent spacetime from Matrices [Emergent spacetime from Matrices 13/17](#page-0-0)

 \checkmark Single $U(N)$ matrix QM is known to be equivalent to 2d String Theory.

$$
S = \int \mathrm{d}t \, \mathrm{Tr} \left[(\partial_t M)^2 - V(M) \right]
$$

 \hookrightarrow One can work with the eigenvalues: $M = U^{-1} \text{ diag}(\lambda_i)$ U

- \hookrightarrow A natural set of gauge-invariant operators are: $\phi_k = \text{Tr} (e^{ikM})$
- The collective field formalism: Description in terms of density eigenvalues with the constraint $\int dx \phi(x) = N$

 \checkmark Single $U(N)$ matrix QM is known to be equivalent to 2d String Theory.

$$
S = \int \mathrm{d}t \, \mathrm{Tr} \left[(\partial_t M)^2 - V(M) \right]
$$

 \hookrightarrow One can work with the eigenvalues: $M = U^{-1} \text{ diag}(\lambda_i)$ U

- \hookrightarrow A natural set of gauge-invariant operators are: $\phi_k = \text{Tr} (e^{ikM})$
- The collective field formalism: Description in terms of density eigenvalues with the constraint $\int dx \phi(x) = N$
- \checkmark Change of variables $M \to \phi$ leads to $(1+1) d$ field theory:

$$
H_{\phi} = \int \mathrm{d}x \left[\frac{1}{2} \partial_x \pi(x) \phi(x) \partial_x \pi(x) + \frac{\pi^2}{6} \phi^3(x) - (\mu_F - V(x)) \phi(x) \right]
$$

 \leftrightarrow A direct transformation to collective field for more than one matrices can only be implemented numerically \rightarrow Impossible to solve the 'Schwinger-Dyson' equations analytically.

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A}$

 \rightarrow A direct transformation to collective field for more than one matrices can only be implemented numerically \rightarrow Impossible to solve the 'Schwinger-Dyson' equations analytically.

$$
\phi_{\mathcal{C}} = \text{Tr}\left(M_1^a M_2^b M_3^c \ldots\right)
$$

4 17 18

 \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow

 \leftrightarrow A direct transformation to collective field for more than one matrices can only be implemented numerically \rightarrow Impossible to solve the 'Schwinger-Dyson' equations analytically.

• Toy BFSS model:
$$
S = \frac{1}{2l_s} \int dt \operatorname{Tr} \left[D_t X^2 + D_t Y^2 - \frac{2}{l_s^4} [X, Y]^2 \right]
$$

イロト イ押 トイヨ トイヨト

 \rightarrow A direct transformation to collective field for more than one matrices can only be implemented numerically \rightarrow Impossible to solve the 'Schwinger-Dyson' equations analytically.

• Toy BFSS model: $S = \frac{1}{2l_s} \int dt \,\text{Tr} \left[D_t X^2 + D_t Y^2 - \frac{2}{l_s^4} [X, Y]^2 \right]$

 \checkmark New Proposal: Fix the gauge by first diagonalizing one of the matrices.

$$
S_E=\frac{1}{2l_s}\int\mathrm{d}\tau\,\left(\sum_i^N\dot{\lambda}_i^2+\sum_i^N\dot{\rho}_i^2+2\sum_{i
$$

 \triangleright \rightarrow \exists \triangleright \rightarrow \exists \rightarrow

 QQ

 \rightarrow A direct transformation to collective field for more than one matrices can only be implemented numerically \rightarrow Impossible to solve the 'Schwinger-Dyson' equations analytically.

• Toy BFSS model: $S = \frac{1}{2l_s} \int dt \,\text{Tr} \left[D_t X^2 + D_t Y^2 - \frac{2}{l_s^4} [X, Y]^2 \right]$

 \checkmark New Proposal: Fix the gauge by first diagonalizing one of the matrices.

$$
S_E=\frac{1}{2l_s}\int\mathrm{d}\tau\,\left(\sum_i^N\dot{\lambda}_i^2+\sum_i^N\dot{\rho}_i^2+2\sum_{i
$$

 \checkmark Next, integrate out the off-diagonal strings

 \mathbf{y} of \mathbf{B} and \mathbf{A} in

 \rightarrow A direct transformation to collective field for more than one matrices can only be implemented numerically \rightarrow Impossible to solve the 'Schwinger-Dyson' equations analytically.

• Toy BFSS model: $S = \frac{1}{2l_s} \int dt \,\text{Tr} \left[D_t X^2 + D_t Y^2 - \frac{2}{l_s^4} [X, Y]^2 \right]$

 \checkmark New Proposal: Fix the gauge by first diagonalizing one of the matrices.

$$
S_E=\frac{1}{2l_s}\int\mathrm{d}\tau\,\left(\sum_i^N\dot{\lambda}_i^2+\sum_i^N\dot{\rho}_i^2+2\sum_{i
$$

Next, integrate out the off-diagonal strings

$$
S_{\mathrm{eff}} = \int \mathrm{d}\tau \ \left[\frac{1}{2l_{\mathsf{S}}} \left(\sum_i^N \dot{\lambda}_i^2 + \sum_i^N \dot{\rho}_i^2 \right) \right] - \frac{1}{2} \sum_{i < j, i = 1}^N \mathrm{Tr} \log \left(1 - \frac{1}{2l_{\mathsf{S}}^4} \int \mathrm{d}s \left| s - \tau \right| \left(\lambda_i(s) - \lambda_j(s) \right)^2 \right)
$$

母→ イヨ→ イヨ

 \leftrightarrow A direct transformation to collective field for more than one matrices can only be implemented numerically \rightarrow Impossible to solve the 'Schwinger-Dyson' equations analytically.

• Toy BFSS model:
$$
S = \frac{1}{2l_s} \int dt \operatorname{Tr} \left[D_t X^2 + D_t Y^2 - \frac{2}{l_s^4} [X, Y]^2 \right]
$$

 \checkmark New Proposal: Fix the gauge by first diagonalizing one of the matrices.

 \checkmark Next, integrate out the off-diagonal strings To get a time-local effective action, we need to add a mass term $\text{Tr} \left(m^2 Y^2 \right)$ to the action. Then, to leading order:

$$
\mathcal{S}_{\mathrm{eff}}=\int\mathrm{d}\tau\,\left(\frac{1}{2l_s}\left(\sum_{i}^{N}\dot{\lambda}_{i}^{2}+\sum_{i}^{N}\dot{\rho}_{i}^{2}\right)-\frac{1}{4ml_s^4}\sum_{i
$$

 \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow

 \leftrightarrow A direct transformation to collective field for more than one matrices can only be implemented numerically \rightarrow Impossible to solve the 'Schwinger-Dyson' equations analytically.

• Toy BFSS model:
$$
S = \frac{1}{2l_s} \int dt \operatorname{Tr} \left[D_t X^2 + D_t Y^2 - \frac{2}{l_s^4} [X, Y]^2 \right]
$$

 \checkmark New Proposal: Fix the gauge by first diagonalizing one of the matrices.

 $\sqrt{\ }$ Next, integrate out the off-diagonal strings To get a time-local effective action, we need to add a mass term $\text{Tr} \left(m^2 Y^2 \right)$ to the action. Then, to leading order:

$$
\mathcal{S}_{\mathrm{eff}}=\int\mathrm{d}\tau\,\left(\frac{1}{2l_s}\left(\sum_{i}^{N}\dot{\lambda}_{i}^{2}+\sum_{i}^{N}\dot{\rho}_{i}^{2}\right)-\frac{1}{4ml_s^4}\sum_{i
$$

Possible to get a $(2 + 1)$ -d collective field action! Starting point for connection to String Theory \rightarrow Geometry from Entanglement [with Brandenberger, Dasgupta, Lei & Pasiecznik]

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Collective field: Integrating out off-diagonal elements

$$
H = \frac{l_s}{2} \int dx dy \, [\partial_x \pi(x, y) \phi(x, y) \partial_x \pi(x, y) + \partial_y \pi(x, y) \phi(x, y) \partial_y \pi(x, y)]
$$

+
$$
\frac{l_s \pi^2}{6} \int dx dy \, \phi^3(x, y) + \frac{l_s}{8} \int dx dy \, \frac{(\partial_y \phi(x, y))^2}{\phi(x, y)}
$$

-
$$
\frac{1}{16m l_s^4} \int dx dy dx' dy' \phi(x, y)(x - x')^2 \phi(x', y') + \frac{l_s m^2}{2} \int dx dy y^2 \phi(x, y)
$$

-
$$
\lambda \left[\int dx dy \, \phi(x, y) - N \right]
$$

• Has the right expression when we turn off the second matrix (compactifying y-direction to zero)!

• Yet to understand physical interpretation of taking the massless limit of this model to preserve connection to String Theory!

 QQ

Conclusions

 \checkmark It has been notoriously difficult to find accelerating solutions in string theory \rightarrow Inflation as a coherent state over warped Minskowski? dS does have such an interpretation!

[S.B., Dasgupta & Tatar, JHEP, 2020; S.B., Dasgupta, Guo & Kulinich, JHEP, 2024]

- $\sqrt{\ }$ M-theory consistency rules out large classes of bounce models. [Bernardo, S.B., Dasgupta Mir & Tatar, Phys. Rev. Lett., 2021]
- -
	-
	-
	- $\sqrt{\ }$ Horizon problem, Flatness problem and formation of structure from
	- \checkmark No vacuum energy problem \to Transition from non-geometric emergent phase to radiation dominated era. No cosmological constant.
	- \checkmark Possible to work with the full IKKT model alone and consider a thermal state in it. [Laliberté & S.B., JHEP, 2023]

- □ ▶ - (母 ▶

Conclusions

 \checkmark It has been notoriously difficult to find accelerating solutions in string theory \rightarrow Inflation as a coherent state over warped Minskowski? dS does have such an interpretation!

[S.B., Dasgupta & Tatar, JHEP, 2020; S.B., Dasgupta, Guo & Kulinich, JHEP, 2024]

- $\sqrt{\ }$ M-theory consistency rules out large classes of bounce models. [Bernardo, S.B., Dasgupta Mir & Tatar, Phys. Rev. Lett., 2021]
- \star A new path towards a UV-complete paradigm for the early universe:
	- $\sqrt{\ }$ Numerical evidence for the emergence of 3 large spatial dimensions from full String Theory.
	- $\sqrt{\ }$ Analytically extract a coarse-grained time, space and metric.
	- Thermal fluctuations \Rightarrow Scale invariant primordial perturbations.
	- \checkmark Horizon problem, Flatness problem and formation of structure from first-principles in a fundamental quantum gravity theory.
	- \checkmark No vacuum energy problem \to Transition from non-geometric emergent phase to radiation dominated era. No cosmological constant.
	- Possible to work with the full IKKT model alone and consider a thermal state in it. [Laliberté & S.B., JHEP, 2023] **DIA AREA A BIN A BIN**

Looking ahead

. .

- \star A new path towards a UV-complete paradigm for the early-universe. Ambitious, promising but a lot remains to be done:
	- \bullet Details of non-geometric phase \rightarrow Connection to non-commutative geometry emergent in the UV? [H. Steinacker; A. Chaney & A. Stern; ...]
	- Physical explanation of the SSB phase? Connection with String Gas? Interestingly, non-geometric phase has $p = 0$ (quasi-static phase).
	- \rightarrow Strings as solitonic states in Matrix models \rightarrow Annihilation of string loops into radiation. Collective field formalism!
		- Derive background cosmology from BFSS model (combine MC simulations and analytical insights). Derive Friedmann equations!
		- A gauge-invariant notion of entanglement for matrices using the Collective Field \rightarrow Area-law for toy models. [Frenkel & Hartnoll; Das, Kaushal, Mandal, Liu, Trivedi; Hampapura, Harper & Lawrence, . . .]
		- Observable consequences: NG, PBHs from the Poisson part of the UV spectrum, Primordial B fields,

 $(1 + 4\sqrt{3})$ $(1 + 4\sqrt{3})$