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Quantum origins of the Universe
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— Where did we come from?
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Quantum origins of the Universe
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Quantum origins of the Universe
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— Quantum seeds of structure in the early universe
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Quantum effects in the early universe
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Quantum effects in the early universe

< Inflation: Phase of accelerated expansion
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Quantum effects in the early universe

— Inflation: Phase of accelerated expansion
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Quantum effects in the early universe

— Inflation: Phase of accelerated expansion

v Inflation: Not only solves standard cosmological puzzles but also explains
late-time inhomogeneities as originating from quantum vacuum fluctuations

= ‘ Rare interplay between microscopic and macroscopic scales!

Photo credit: Blake Sherwin " e b .4\,
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Quantum effects in the early universe
< Inflation: Phase of accelerated expansion

v’ Inflation: Not only solves standard cosmological puzzles but also explains
late-time inhomogeneities as originating from quantum vacuum fluctuations

= | Rare interplay between microscopic and macroscopic scales!
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Quantum effects in the early universe @
— Inflation: Phase of accelerated expansion

v" Inflation: Not only solves standard cosmological puzzles but also explains
late-time inhomogeneities as originating from quantum vacuum fluctuations

= | Rare interplay between microscopic and macroscopic scales!

e Microphysics beyond Einstein’s equations:
@ Why did inflation begin?
@ How is potential so flat?
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Quantum effects in the early universe @

— Inflation: Phase of accelerated expansion
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Quantum effects in the early universe

— Inflation: Phase of accelerated expansion

v Inflation: Not only solves standard cosmological puzzles but also explains
late-time inhomogeneities as originating from quantum vacuum fluctuations

= | Rare interplay between microscopic and macroscopic scales!

e Microphysics beyond Einstein’s equations:

L . -
- Wil dlid daiflalion. Do Derive inflation from fundamental physics?

@ How is potential so flat?

— Standard lore: ¢(x, t) = ¢a(t) + 5(x, t) — Consistency?
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Quantum effects in the early universe @

— Inflation: Phase of accelerated expansion

v Inflation: Not only solves standard cosmological puzzles but also explains
late-time inhomogeneities as originating from quantum vacuum fluctuations

= | Rare interplay between microscopic and macroscopic scales!

e Microphysics beyond Einstein’s equations:
. . @
L Vil ek e sl Derive inflation from fundamental physics?

@ How is potential so flat?

— Standard lore: ¢(x, t) = ¢a(t) + 5(x, t) — Consistency?

v Quantum fluctuations source the background —
Coarse-grained long-wavelength modes follow stochastic Langevin/FP
equation with “Gaussian” white noise. [Starobinsky]
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Quantum effects in the early universe

— Inflation: Phase of accelerated expansion

v Inflation: Not only solves standard cosmological puzzles but also explains
late-time inhomogeneities as originating from quantum vacuum fluctuations

= | Rare interplay between microscopic and macroscopic scales!

e Microphysics beyond Einstein’s equations:
. . @
L Vil ek e sl Derive inflation from fundamental physics?

@ How is potential so flat?

— Standard lore: ¢(x, t) = ¢a(t) + 5(x, t) — Consistency?

v Quantum fluctuations source the background —
Coarse-grained long-wavelength modes follow stochastic Langevin/FP
equation with “Gaussian” white noise. [Starobinsky]

Consistent early-universe paradigm: Requires new perspectives of
(open) EFTs in curved space to explain non-unitary phenomenon
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Cosmological open quantum
systems
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Effective theories beyond Wilson: Non-unitarity @

e Liffective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.
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e Liffective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.
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Effective theories beyond Wilson: Non-unitarity @

e Liffective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.

— When dissipative effects (energy and information transfers) are
significant, the low-energy EFT is neither unitary nor local.
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Effective theories beyond Wilson: Non-unitarity

e Liffective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.

< When dissipative effects (energy and information transfers) are
significant, the low-energy EFT is neither unitary nor local.

WEFT [Dubovsky et al, 2011] NEQ EFT [Glorioso & Liu, 2018]
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Effective theories beyond Wilson: Non-unitarity @

e Liffective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.

— When dissipative effects (energy and information transfers) are
significant, the low-energy EFT is neither unitary nor local.

v UV/IR mixing — No well-segregated energy sectors.
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Effective theories beyond Wilson: Non-unitarity @
e Liffective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.

< When dissipative effects (energy and information transfers) are
significant, the low-energy EFT is neither unitary nor local.

v UV/IR mixing — No well-segregated energy sectors.

< Comoving gauge: ds* = —a*(7)[dr* — (1 + 2¢)dx*].
Canonical variable x = z(7)¢, where z> = 2ea>M3,.

<+ The quadratic action S® = [ d*x [((‘Lx)2 - ZTNXQ}: collection of

harmonic oscillators with a time-dependent mass term.

~oy 1 [ d%k At A A 2 T, . ata
A® — 2] @y k [ckckT 4F c_kcik} - i [ckc_k = chik}
—_———

Usual scalar field in flat space  Squeezing due to curved space
v k< z'/z ~ aH: Squeezing term dominant = super-Hubble modes in the
squeezed state.

v k> 7' /z ~ aH: first term dominant = sub-Hubble modes in their
quantum (BD) vacuum.
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Effective theories beyond Wilson: Non-unitarity @
e Biffective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.

< When dissipative effects (energy and information transfers) are
significant, the low-energy EFT is neither unitary nor local.

v UV/IR mixing — No well-segregated energy sectors.
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Effective theories beyond Wilson: Non-unitarity @

e Bffective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.

— When dissipative effects (energy and information transfers) are
significant, the low-energy EFT is neither unitary nor local.

v UV/IR mixing — No well-segregated energy sectors.

Siot = S[C] + S[o] + Sir[¢, o]

Environmetal sector: ¢ &  System mode: ¢

e Goal: Trace out the hidden sector & still use some hierarchy to organize
system dynamics
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Effective theories beyond Wilson: Non-unitarity

e Bffective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.

< When dissipative effects (energy and information transfers) are
significant, the low-energy EFT is neither unitary nor local.

v UV/IR mixing — No well-segregated energy sectors.

Siot = S[C] + S[o] + Sir[¢, o]

Environmetal sector: ¢ &  System mode: ¢

e Goal: Trace out the hidden sector & still use some hierarchy to organize
system dynamics

i) effective action
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Photo credit: Thomas Colas
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Effective theories beyond Wilson: Non-unitarity

e Effective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.

< When dissipative effects (energy and information transfers) are
significant, the low-energy EFT is neither unitary nor local.

v UV/IR mixing — No well-segregated energy sectors.

Siot = S[¢] + S[o] + Sik[¢, o]

Environmetal sector: 0 &  System mode: ¢

e Goal: Trace out the hidden sector & still use some hierarchy to organize
system dynamics

Derive an open inflationary EFT capable of incorporating dissipative & ‘
diffusive effects = Find their observational signatures.
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Inflation creates exponentially large scales
— How long did inflation last?

Pt
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Credit: Devereux & Farell are not in contact
50 cannot be at same
temperature: The Horizon Problem
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Inflation creates exponentially large scales

— How long did inflation last? Why should things change just beyond
what we can observe?
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Inflation creates exponentially large scales @
— How long did inflation last? Why should things change just beyond

what we can observe? ‘ Cosmological principle : We are not special! ‘

Photo credit: Sarah Shandera

Suddhasattwa Brahma Nonlocal quantum effects in the early Universe



Inflation creates exponentially large scales
— How long did inflation last? Why should things change just beyond

what we can observe? ‘ Cosmological principle : We are not special! ‘

v Microscopic (particle) physics = Long-short mode-coupling

Photo credit: Sarah Shandera
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Inflation creates exponentially large scales

— How long did inflation last? Why should things change just beyond
what we can observe? ‘ Cosmological principle : We are not special! ‘

v Microscopic (particle) physics = Long-short mode-coupling

v" Observations probe effective theory for one given Hubble patch for
realistic models.
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Spacetime Horizons imply open EFT's @

v Gravity creates spacetime boundaries = Horizons limit what we can
observe without restricting the flow of energy and information across it
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Spacetime Horizons imply open EFT's
v Gravity creates spacetime boundaries = Horizons limit what we can
observe without restricting the flow of energy and information across it
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Spacetime Horizons imply open EFT's @

v Gravity creates spacetime boundaries = Horizons limit what we can
observe without restricting the flow of energy and information across it

v Horizons are sometimes observer-dependent = Different open EFTs for
different observers!
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Spacetime Horizons imply open EFT's

v Gravity creates spacetime boundaries = Horizons limit what we can
observe without restricting the flow of energy and information across it

v Horizons are sometimes observer-dependent = Different open EFTs for
different, observers!

— Open systems not a new concept — Entanglement structure of the

quantum vacuum in BH or dS space. [Srednicki; Maldacena & Pimentel; Calzetta &
Hu; Brandenberger, Mukhanov & Prokopec; ...]
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Spacetime Horizons imply open EFT's

v Gravity creates spacetime boundaries = Horizons limit what we can
observe without restricting the flow of energy and information across it

v Horizons are sometimes observer-dependent = Different open EFTs for
different, observers!

— Open systems not a new concept — Entanglement structure of the
quantum vacuum in BH or dS space. [Srednicki; Maldacena & Pimentel; Calzetta &

Hu; Brandenberger, Mukhanov & Prokopec; ...]

— Renewed interest from new perspectives [Chandrasekharan, Longo, Pennington

& Witten; Jensen, Sorce & Speranza; Susskind; Alicki, Barenboim & Jenkins; ...]
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Spacetime Horizons imply open EFT's

v Gravity creates spacetime boundaries = Horizons limit what we can
observe without restricting the flow of energy and information across it

v Horizons are sometimes observer-dependent = Different open EFTs for
different, observers!

— Open systems not a new concept — Entanglement structure of the
quantum vacuum in BH or dS space. [Srednicki; Maldacena & Pimentel; Calzetta &

Hu; Brandenberger, Mukhanov & Prokopec; ...]

— Renewed interest from new perspectives [Chandrasekharan, Longo, Pennington

& Witten; Jensen, Sorce & Speranza; Susskind; Alicki, Barenboim & Jenkins; ...]

° Open EFTs for inflation [S.B., Caledron, Luo, Kaplanek, Burgess, Holman, Martin,

Vennin, Colas, Grain, Shandera, Boyanovsky, Nelson, Hu, Hsiang, McDonald, Prokopec, ...]
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Why should you care?

A physicist is lost in a hot air balloon. She looks down
and finds a person standing in a field and asks him,
"Hello! Where am I?"

The man thinks for a bit, and then replies, "I think you
are in a hot air-balloon".

As the balloon flies away, the physicist concludes, "This
must be a mathematician. The answer was absolutely
correct in a precise sense. And was utterly useless to
me."
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Why should you care?

' A physicist is lost in a hot air balloon. She looks down

and finds a person standing in a field and asks him,
"Hello! Where am I?"

The man thinks for a bit, and then replies, "I think you
are in a hot air-balloon".

As the balloon flies away, the physicist concludes, "This
must be a mathematician. The answer was absolutely
correct in a precise sense. And was utterly useless to
me."

e Mathematician — Theorist working on Fundamental Cosmology?
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Why should you care? @

v" Learn about the early-universe from observations of CMB/LSS.
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Why should you care?

v Learn about the early-universe from observations of CMB/LSS.
Non-Gaussianities — Constraints on model-space.

Pt

Photo credit: Daniel Baumann
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Why should you care?
v Learn about the early-universe from observations of CMB/LSS.
Non-Gaussianities — Constraints on model-space.
e We have not observed any NG yet — Need a fresh perspective! [Chen,
Wang, Baumann, Green, Arkani-Hamed, Maldacena, Lee, Pimentel, Joyce, Pajer, Sleight,

Taronna, Stefanyszyn, Pinol, Renaux-Petel ...;

S.B., Nelson & Shandera, 2014 (PRD); Bonga, S.B., Deutsch & Shandera, 2016 (JCAP) , ...]
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Why should you care?
v Learn about the early-universe from observations of CMB/LSS.

Non-Gaussianities — Constraints on model-space.
e We have not observed any NG yet — Need a fresh perspective!

v" Many non-trivial predictions of inflation comes from non-perturbative
regimes = Primordial BHs, massive galaxy clusters

Suddhasattwa Brahma Nonlocal quantum effects in the early Universe



SV,

Why should you care? @
v Learn about the early-universe from observations of CMB/LSS.
Non-Gaussianities — Constraints on model-space.

e We have not observed any NG yet — Need a fresh perspective!

v' Many non-trivial predictions of inflation comes from non-perturbative
regimes = Primordial BHs, massive galaxy clusters

PDF

—— Full PDF
Gaussian approx .
Au approx
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Why should you care? @

v Learn about the early-universe from observations of CMB/LSS.
Non-Gaussianities — Constraints on model-space.
e We have not observed any NG yet — Need a fresh perspective!

v" Many non-trivial predictions of inflation comes from non-perturbative
regimes = Primordial BHs, massive galaxy clusters

v" Given realistic models, open EFTs will give indirect predictions through
tails of PDF's over and above direct predictions for non-Gaussianities
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Why should you care?

v Learn about the early-universe from observations of CMB/LSS.
Non-Gaussianities — Constraints on model-space.
e We have not observed any NG yet — Need a fresh perspective!

v" Many non-trivial predictions of inflation comes from non-perturbative
regimes = Primordial BHs, massive galaxy clusters

v" Given realistic models, open EFTs will give indirect predictions through
tails of PDF's over and above direct predictions for non-Gaussianities

v Dissipative/thermal effects = large primordial B fields, vector modes —
affects structure, cosmic tensions, ... [with Alexander, Berera, Toomey . ..]

v" Better capture effects of clustering on GW propagation — Affects
stochastic GW detections [with Kalomenopoulos, Khochfar]
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Why should you care?

v Learn about the early-universe from observations of CMB/LSS.
Non-Gaussianities — Constraints on model-space.
o We have not observed any NG yet — Need a fresh perspective!

v" Many non-trivial predictions of inflation comes from non-perturbative
regimes = Primordial BHs, massive galaxy clusters

v" Given realistic models, open EFTs will give indirect predictions through
tails of PDF's over and above direct predictions for non-Gaussianities

v Dissipative/thermal effects = large primordial B fields, vector modes —
affects structure, cosmic tensions, ... [with Alexander, Berera, Toomey . ..]

v" Better capture effects of clustering on GW propagation — Affects
stochastic GW detections [with Kalomenopoulos, Khochfar]

e When does dissipative effects affect observations? Signatures for
“quantum” origin of inflation? [Salcedo, Colas & Pajer, 2024]

e Resolves conceptual issues: stochastic framework, EI,
UV-completion? “Swampland constraints”
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Secular divergences &
Non-perturbative resummations
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Late-time (secular) divergences @
— Many gravity puzzles appear at late-times: Eternal inflation, BH Inf loss

Suddhasattwa Brahma Nonlocal quantum effects in the early Universe 7/23



Late-time (secular) divergences
— Many gravity puzzles appear at late-times: Eternal inflation, BH Inf loss

—i(Ho+AHint )t

‘ e vs e (1 — iAHinet)

for t — oo, SPT fails no matter how small X is!
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Late-time (secular) divergences
— Many gravity puzzles appear at late-times: Eternal inflation, BH Inf loss

—i(Ho+AHint )t

‘ e Vs e~ Mot (1 — iAHipnst)

for t — oo, SPT fails no matter how small X is!

v Although this is a generic issue, it does not show up in scattering
problems due to having asymptotically free particles.
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Late-time (secular) divergences @
— Many gravity puzzles appear at late-times: Eternal inflation, BH Inf loss

—i(Ho+AHint )t

‘ e Vs e~ Mot (1 — iAHipnst)

for t — oo, SPT fails no matter how small X is!

v Although this is a generic issue, it does not show up in scattering
problems due to having asymptotically free particles.

v" However, there is no way to turn-off gravity! Gravity always acts as an
ever-present medium.

e Late-time secular growth = Breakdown of SPT in cosmology. [Woodard,

Tsamis, Glavan, Miao, Prokopec, Kaplanek, Burgess, Holman, Leblond, Shandera, ...]
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Late-time (secular) divergences @

s

e Late-time secular growth = Breakdown of SPT in cosmology. [Woodard,

Tsamis, Glavan, Miao, Prokopec, Kaplanek, Burgess, Holman, Leblond, Shandera, ...]

— Ezrample: Momentum-space entanglement entropy — The coupling
between long and short modes provided by the leading order cubic
non-linearity arising solely from GR: Hin, o< € a¢ (9¢)?

les

(aH)™*

compoving sca

Density
Perturbation

Environment

System
. a, as Ina
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Late-time (secular) divergences

e Late-time secular growth = Breakdown of SPT in cosmology. [Woodard,

Tsamis, Glavan, Miao, Prokopec, Kaplanek, Burgess, Holman, Leblond, Shandera, ...]

— Erample: Momentum-space entanglement entropy — The coupling
between long and short modes provided by the leading order cubic
non-linearity arising solely from GR: Hin, o< € a¢ (9¢)?

— Consider bands of momenta as subalgebras to define the subsystem and
partition the full Hilbert space. [Balasubramanian, McDermott & Raamsdonk, 2011;

Santhosh Kumar & Shankaranarayanan, 2017]
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Late-time (secular) divergences

e Late-time secular growth = Breakdown of SPT in cosmology. [Woodard,

Tsamis, Glavan, Miao, Prokopec, Kaplanek, Burgess, Holman, Leblond, Shandera, .. .]

— FEzample: Momentum-space entanglement entropy — The coupling
between long and short modes provided by the leading order cubic
non-linearity arising solely from GR: Hin, o< € a¢ (9¢)?

— Consider bands of momenta as subalgebras to define the subsystem and
partition the full Hilbert space. [Balasubramanian, McDermott & Raamsdonk, 2011;

Santhosh Kumar & Shankaranarayanan, 2017]

Entanglement entropy (per unit physical vol) : Sent ~ € H?> My (a/a;)?
[S.B., Alaryani & Brandenberger, 2005.09688 (PRD)]
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Late-time (secular) divergences

e Late-time secular growth = Breakdown of SPT in cosmology. [Woodard,

Tsamis, Glavan, Miao, Prokopec, Kaplanek, Burgess, Holman, Leblond, Shandera, .. .]

— FEzample: Momentum-space entanglement entropy — The coupling
between long and short modes provided by the leading order cubic
non-linearity arising solely from GR: Hin, o< € a¢ (9¢)?

— Consider bands of momenta as subalgebras to define the subsystem and
partition the full Hilbert space. [Balasubramanian, McDermott & Raamsdonk, 2011;

Santhosh Kumar & Shankaranarayanan, 2017]

Entanglement entropy (per unit physical vol) : Sent ~ € H?> My (a/a;)?
[S.B., Alaryani & Brandenberger, 2005.09688 (PRD)]

e Similar results for EE of spectator field with ¢° interaction in de Sitter!
[S.B., Calderén, Hassan & Mi, 2302.13894 (PRD)]
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Late-time (secular) divergences

e Late-time secular growth = Breakdown of SPT in cosmology. [Woodard,

Tsamis, Glavan, Miao, Prokopec, Kaplanek, Burgess, Holman, Leblond, Shandera, .. .]

— FEzample: Momentum-space entanglement entropy — The coupling
between long and short modes provided by the leading order cubic
non-linearity arising solely from GR: Hin: o< eac (0¢ )2

— Consider bands of momenta as subalgebras to define the subsystem and
partition the full Hilbert space. [Balasubramanian, McDermott & Raamsdonk, 2011;

Santhosh Kumar & Shankaranarayanan, 2017]

Entanglement entropy (per unit physical vol) : Sent ~ € H?> My (a/a;)?
[S.B., Alaryani & Brandenberger, 2005.09688 (PRD)]

e Similar results for EE of spectator field with ¢° interaction in de Sitter!
[S.B., Calderén, Hassan & Mi, 2302.13894 (PRD)]

e Rapid Growth: Perturbative EE ~ reheating (thermal) entropy =
Breakdown of perturbation theory around scrambling time of dS
[1/HIn(My/H)].
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Trans-Planckian Censorship

©
to ~
Ho
Aolf)
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tr X
Aul)
/
[
ti

[Bedroya, Brandenberger, LoVerde, Vafa, 2019]

e Entropy growth typically signals deep puzzles for fundamental physics!
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What does non-perturbative resummation mean? @

— Heuristic example: Particle Decay
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What does non-perturbative resummation mean? @

— Heuristic example: Particle Decay

v We trust the solution N(t) = N(0)e~"* for the equation

%N(t) = —TN(t) for late times ('t > 1)

even though the decay rate is computed in SPT, i.e., [ ~ O()\?)
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What does non-perturbative resummation mean?

— Heuristic example: Particle Decay

v We trust the solution N(t) = N(0)e~"* for the equation

%N(t) = —TN(t) for late times ('t > 1)

even though the decay rate is computed in SPT, i.e., [ ~ O()\?)

v Evolution equation does not depend ezplicitly on t (time-locality) =
Broader domain of validity!
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What does non-perturbative resummation mean?

— Heuristic example: Particle Decay

v We trust the solution N(t) = N(0)e~"* for the equation

%N(t) = —TN(t) for late times ('t > 1)

even though the decay rate is computed in SPT, i.e., [ ~ O()\?)

v Evolution equation does not depend ezplicitly on t (time-locality) =
Broader domain of validity!

v Intuitive understanding behind trusting

N(t) = N(0)e ™  ws  N(t) = N(0)(1—Tt)

for 't > 1.
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What does non-perturbative resummation mean? @

< Heuristic example: Particle Decay [Greg Kaplanek]

~NO)1-Tt+...]

L 2
~~
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What does non-perturbative resummation mean? @

— Heuristic example: Particle Decay [Greg Kaplanek]

N0+ dN(t)
BT ' N(t)
~Nt)1-T—t1)+..]
0 ty t t3 ta ts te > 1
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What does non-perturbative resummation mean? @

— Heuristic example: Particle Decay [Greg Kaplanek]

N(0)+ dN(t) _
3 = [ N(t)
~ N(t)[1|-T(t —t5) +...]
0 t ta ts ts ts t > 1
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What does non-perturbative resummation mean? @

— Heuristic example: Particle Decay [Greg Kaplanek]

L 2
S~
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What does non-perturbative resummation mean? @

< Heuristic example: Particle Decay [Greg Kaplanek]

L 2
~~
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What does non-perturbative resummation mean? @

— Heuristic example: Particle Decay [Greg Kaplanek]

L 4
3

Suddhasattwa Brahma Nonlocal quantum effects in the early Universe 10/23



Non—perturbative resummadtion in COSHIOIOgy @
< Assume at 79, no coupling exists (there are no superhorizon modes) \
v Born approximation (Weak coupling): pi(7) = ps(7) ® pe(0)
v Markovian approximation (time-locality): p(7’) — p(7)

pls = —i[Her(r), ps] + D k(r) (-++), with 7 >0
k
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Non—perturbative resummadtion in COSHlOlOgy @
< Assume at 79, no coupling exists (there are no superhorizon modes)
v Born approximation (Weak coupling): pi(7) = ps(7) ® pe(0)
v Markovian approximation (time-locality): p(7’) — p(7)

pls = —i[Her(r), ps] + D k(r) (-++), with 7 >0
k

< The power spectrum: [S.B., Berera & Calderén, 2107.06910 (CQG)]

A%(qr) = 55 (75 (N)754(7)) = 55 Tr [ (1) 75, (7)pr(7)]
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Non-perturbative resummation in cosmology

< The power Spectrum: [S.B., Berera & Calderén, 2107.06910 (CQG)]

D2(q7) = 5% (08 (1)75,(7)) = 25 Tr [0 (1) 75, (7)p:(7)]

V" The zeroth order approximation: A%(q) = 26’\1/,—12)1 (%)2

v The first order correction: AZ(qr) = 251\1/@,1 (%)2 (1 — aNZ) where

o ~ 0.00211886 eH?/(2M3,) and N. = In(—1/qr).
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Non-perturbative resummation in cosmology

< The power Spectrum: [S.B., Berera & Calderén, 2107.06910 (CQG)]

D2(q7) = 5% (08 (1)75,(7)) = 25 Tr [0 (1) 75, (7)p:(7)]

V" The zeroth order approximation: A%(q) = 26’\1/,—12)1 (%)2

v The first order correction: AZ(qr) = 251\1/@,1 (%)2 (1 — aNZ) where

o ~ 0.00211886 eH?/(2M3,) and N. = In(—1/qr).

— Treat ME as a bona fide dynamical map:

v Ignoring the decaying mode, possible to solve transport equation for
2
the power spectrum as AZ(gr) = 26,\14—%1 (%)2 e~ N where

o = eH?/(967° M3,) ~ 0.00211086 eH?/(2M3)).
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Non-perturbative resummation in cosmology
< The power spectrum:

[S.B., Berera & Calderén, 2107.06910 (CQG)]

D2(q7) = 557 (78 (1) 75,(7))

= 55 Tr [0 (7)024(T)pe(7)]

V" The zeroth order approximation: A%(q) = W (;)2
eMpy 24T
v The first order correction: AZ(gr)

2
= 25/\1/11%,1 (£)" (1 — aN?) where

o ~ 0.00211886 eH?/(2M3,) and N. = In(—1/qr).
— Treat ME as a bona fide dynamical map:
v Ignoring the decaying mode, possible to solve transport equation for
the power spectrum as AZ(gr) = ﬁ (%)2 e M where
P1
o = eH?/(967° M3,) ~ 0.00211086 eH?/(2M3)).

MEs allows non-perturbative resummation = Matches exact results
better than standard perturbation theory in toy models [Colas, Grain &
Vennin, 2022]
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SV,

Non-perturbative resummation in cosmology

Late Time Resummation

A7,
0.0001
Late—Time Resummation
100 200
—-0.0001F
—-0.00021
eH?=10"2Mp
—-0.00031
— SPT — Resummed solution
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SV,

Non-perturbative resummation in cosmology

Late Time Resummation

A%,
0.00001
Late—Time Resummation
n i L L L L L L N

500

—0.00001+

—-0.00002 Tnvalidity-

eH?=1073Mp

-0.00003—

— SPT — Resummed solution
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Why non-Markovianity in
cosmology”’
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Environments in cosmology @

— Why do we need have time nonlocal MEs?
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Environments in cosmology @

— Why do we need have time nonlocal MEs?

psys = Trep(t)
? = —i Tre [H7/)(t)]

v" The RHS does not depend on psys alone!
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Environments in cosmology
— Why do we need have time nonlocal MEs?

pos = Trep(t)
d sSys .
L2 = i Tre [H, p(t)]

v" The RHS does not depend on psys alone!
v The full system is given by H = Hs + Hg + H; where

Hy = /d3x Js(t, x) ® Je(t, x)
v Tracing over £, Nakajima-Zwanzig equation (suppressing spatial indices):

Shoalt) = - / ar { [Js(8)I (£ )esa () = Js (¢ )ys(£) s (£)] K7 (£, ')

~ s ()se(€)5(¥)) = (£ ) s (£ )Is(8)] K7 (2, t')*} ..

with the kernel K7 (¢, t') := (Je(t)Je (t')pe(t)) -
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Environments in cosmology @

— Why do we need have time nonlocal MEs?
v" The full system is given by H = Hs + Hg + H; where

H = /d3x Js(t,x) ® Je(t, x)
v Tracing over &£, Nakajima-Zwanzig equation (suppressing spatial indices):

%mm - - / at! { (I (8)I (£ )esa () = Js (¢ )ys(£) s (£)] K7 (2, )

~ s (ye(€ 1 (¥) = (£ ) s (I (8)] K7 (2, t')*} .

with the kernel K~ (t,t") 1= (Je(t)Je(t')pe(t))s-

< If environment correlations K~ (t, t') are sharply peaked around t = t’
such that the rest of the integrand varies slowly compared to the width of
K~ (t, t'), then system becomes time-locall
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Environments in cosmology @

— Why do we need have time nonlocal MEs?

— If environment correlations K~ (t,t') are sharply peaked around t = t’
such that the rest of the integrand varies slowly compared to the width of
K= (t, t'), then system becomes time-local!

v" When environment has large dofs, thermal equilibrium = Achieves
stationarity i.e., No backreaction of the system on “bath”

e Markovianity: No information backflow = Fast decay of (environment)
temporal correlations. Past history not important.
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Environments in cosmology

— Why do we need have time nonlocal MEs?

< If environment correlations K~ (t,t') are sharply peaked around t = t’

such that the rest of the integrand varies slowly compared to the width of
K= (t, t'), then system becomes time-locall

v When environment has large dofs, thermal equilibrium =- Achieves
stationarity i.e., No backreaction of the system on “bath”

e Markovianity: No information backflow = Fast decay of (environment)
temporal correlations. Past history not important.

v Background symmetries in cosmology: Homogeneity & Isotropy =
Infinitely many & fields required for large dofs since k couples to —k at
quadratic order.
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Environments in cosmology

— Why do we need have time nonlocal MEs?

< If environment correlations K~ (t,t') are sharply peaked around t = t’

such that the rest of the integrand varies slowly compared to the width of
K= (t, t'), then system becomes time-locall

v" When environment has large dofs, thermal equilibrium = Achieves
stationarity i.e., No backreaction of the system on “bath”

e Markovianity: No information backflow = Fast decay of (environment)
temporal correlations. Past history not important.

v Background symmetries in cosmology: Homogeneity & Isotropy =
Infinitely many & fields required for large dofs since k couples to —k at
quadratic order.

v Heuristic argument shows that cosmological environments are typically
out-of-equilibrium = non-Markovian MEs necessary!
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Environments in cosmology

— Why do we need have time nonlocal MEs?

— If environment correlations K~ (t, t') are sharply peaked around t = t’

such that the rest of the integrand varies slowly compared to the width of
K= (t, t'), then system becomes time-local!

v" When environment has large dofs, thermal equilibrium = Achieves
stationarity i.e., No backreaction of the system on “bath”

e Markovianity: No information backflow = Fast decay of (environment)
temporal correlations. Past history not important.

v Background symmetries in cosmology: Homogeneity & Isotropy =
Infinitely many £ fields required for large dofs since k couples to —k at
quadratic order.

v Heuristic argument shows that cosmological environments are typically
out-of-equilibrium = non-Markovian MEs necessary!

How do we know that cosmological MEs are non-Markovian? ‘
Check kernel of environment correlations!
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Markovianity & benchmarking loop corrections @

— Assuming Markovianity, one finds the Lindblad ME.
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Markovianity & benchmarking loop corrections @
— Assuming Markovianity, one finds the Lindblad ME.

e Perturbative correction to graviton propagator from tensor loops:

%

A% ~ —52%? (%)4{[2—1—@52—&—01 2—sin2]|n <ﬂ> +O(l)}

[S.B., Berera & Calderén, 2206.05797 (JHEP)]
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Markovianity & benchmarking loop corrections @

— Assuming Markovianity, one finds the Lindblad ME.

e Perturbative correction to graviton propagator from tensor loops:

574 7

A2~ 256 (1\’1"]))4{[2+cos2+Ci 2-sin2]in () +0(1)}

[S.B., Berera & Calderén, 2206.05797 (JHEP)]

v IR terms can be as in the scalar case — Ignored above
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Markovianity & benchmarking loop corrections
— Assuming Markovianity, one finds the Lindblad ME.

e Perturbative correction to graviton propagator from tensor loops:

A% ~ —52%? (%)4{[2+cos2+(}i 2—sin2]|n <ﬂ> +O(l)}

%

[S.B., Berera & Calderén, 2206.05797 (JHEP)]

v Exactly matches loop corrections to graviton propagator under
Markovian approximation [Fréb, Roura & Verdaguer, 2012; Tan, 2020; Tanaka &
Urakawa, 2013; ...] No spurious In(k/p) term [Adshead, Easther & Lim, 2009; . . . ]
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Markovianity & benchmarking loop corrections
— Assuming Markovianity, one finds the Lindblad ME.

e Perturbative correction to graviton propagator from tensor loops:

T 5rd i

A2 ~ 250 (%)4{[2+ cos2+Ci 2—sin2]In (2) + O(1)}

[S.B., Berera & Calderén, 2206.05797 (JHEP)]

v Exactly matches loop corrections to graviton propagator under
Markovian approximation [Fréb, Roura & Verdaguer, 2012; Tan, 2020; Tanaka &
Urakawa, 2013; ...] No spurious In(k/p) term [Adshead, Easther & Lim, 2009; . . . ]

— Go back to check underlying Lindblad form:

K> (r,7) 22, 5(r — 7')?
graining
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Markovianity & benchmarking loop corrections
— Assuming Markovianity, one finds the Lindblad ME.

e Perturbative correction to graviton propagator from tensor loops:

A% ~ —52%? (%)4{[2+cos2+(}i 2—sin2]|n <ﬂ> +(’)(1)}

%

[S.B., Berera & Calderén, 2206.05797 (JHEP)]

v Exactly matches loop corrections to graviton propagator under
Markovian approximation [Fréb, Roura & Verdaguer, 2012; Tan, 2020; Tanaka &
Urakawa, 2013; ...] No spurious In(k/p) term [Adshead, Easther & Lim, 2009; . . . ]

— Go back to check underlying Lindblad form:

K> (r,7) 22, 5(r — 7')?
graining

v Memory Kernel is sharply-peaked but not delta-function peaked:

2=/ [3k(r — 7/) cos(k(r — 7)) + (K3(r — 7')? = 3)sin(k(r — "))

> Yy
Ki(r, 1) ~ L y——;
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Can non-local terms affect
late-time dynamics?
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Non-local origin of secular terms @

— Stochastic Inflation — Provides leading order resummation of IR
divergences with local equations.
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Non-local origin of secular terms

— Stochastic Inflation — Provides leading order resummation of IR
divergences with local equations.

— Graviton loop corrections to CCS or photons in dS show that secular
terms come from time-local terms. Non-local terms decay at late-times.
[Glavan, Miao, Prokopec & Woodard; Wang & Woodard; Kahya & woodard; .. .]
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Non-local origin of secular terms

— Stochastic Inflation — Provides leading order resummation of IR
divergences with local equations.

— Graviton loop corrections to CCS or photons in dS show that secular
terms come from time-local terms. Non-local terms decay at late-times.
[Glavan, Miao, Prokopec & Woodard; Wang & Woodard; Kahya & woodard; .. .]

— Even if there are non-local terms during inflation, do they survive at
late-times?
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Non-local origin of secular terms @

— Stochastic Inflation — Provides leading order resummation of IR
divergences with local equations.

— Graviton loop corrections to CCS or photons in dS show that secular
terms come from time-local terms. Non-local terms decay at late-times.
[Glavan, Miao, Prokopec & Woodard; Wang & Woodard; Kahya & woodard; .. .]

— Even if there are non-local terms during inflation, do they survive at
late-times?

e Using a toy-model, we showed that [s.B., Calderén & Luo, 2407.12091] :

v Secular divergences can just as easily stem from non-Markovian
terms and, more importantly, such terms can still be resummed at late
times following a precise algorithm that does not involve any arbitrary
approximations.

v The memory kernel, corresponding to the integrated-out (or
coarse-grained) fields, in the same model can affect other physical
quantities differently. More specifically, local and non-local parts of
the kernel can become dominant for different physical observables.

Suddhasattwa Brahma Nonlocal quantum effects in the early Universe 15/23



SV,

Toy Model for Stochastic Inflation @

e Toy model: Environment 1) is CCS and System x is a massless, minimally
coupled scalar. [Boyanovsky, 2015-2016; Hollowood & McDonald, 2017]
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Toy Model for Stochastic Inflation @
e Toy model: Environment v is CCS and System y is a massless, minimally
coupled scalar. [Boyanovsky, 2015-2016; Hollowood & McDonald, 2017]

a//

SZ/dT d3x {%[X’Q—(vx)%?x2+w’2—(v¢)2] +)\axzw2:}

with BD initial conditions

wn== (1), wn=2
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Toy Model for Stochastic Inflation

e Toy model: Environment v is CCS and System y is a massless, minimally
coupled scalar. [Boyanovsky, 2015-2016; Hollowood & McDonald, 2017]

a//

SZ/dT d3x {%[X’Q—(vx)%?x2+w’2—(v¢)2] +)\axzw2:}

with BD initial conditions

wn== (1), wn=2

The memory kernel:

Ko(r, ') = 2 / % D)0 (T e (MW7), p =k +ql

_ [ gmintr=r) 1 L s —+
= et P(T—T’)+87T5(T ™)
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Toy Model for Stochastic Inflation

e Toy model: Environment 1) is CCS and System x is a massless, minimally
coupled scalar. [Boyanovsky, 2015-2016; Hollowood & McDonald, 2017]
The memory kernel:

Ko(r, ') = 2 / % D) (P WP, p=lk+a

e () s Lo
s

872 T =7

e Simplifications:

v Since the system field appears at most at quadratic order in the the
full Lagrangian, the evolution equation for the density matrix can be
written as a sum over independent momentum modes p without any
mode-coupling.

v' The associated memory kernel of the environment field has the
advantage of cleanly splitting into two different contributions, one
that is clearly time-local while the other non-local.
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Time-convolutionless master equation @

e The TCL; master equation:

dprea . 312 Ta AT A a A At 1 ata A
W ( — iHP [212], prea(r)] +75(r) (2eea(r)2] = 512121, Prea(r)})
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Time-convolutionless master equation

e The TCL; master equation:

with the effective quadratic Hamiltonian given by

1[, . . . a’ Aat | aa
H:§'2) = 5 {22221' + (k2 + An)zlzf “F (; ar A12) (ZIZQT + zZzlJr):|

and the dissipator matrix: v; = Djj — iA12 wjj.

Suddhasattwa Brahma Nonlocal quantum effects in the early Universe
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Time-convolutionless master equation @
e The TCL, master equation:
dpred o &R a A A A 1 AtA A
fred =3 ( — iHP [212] , Brea(r)] + () (Zeea(r)2f - 5122 ,pred(r)}))

p

)\2
Dy; = T [ny + In(—2p7) — Ci(—2p7) [cos(2pT) + p7sin(2pT)]
2

+ Si(2p7) [pT cos(2pT) — sin(2p7‘)]] + YT

+ Fi[r, 70]
2

Ap=—" [
1= g2 H2pt3

p7 [ve — In(—=2p7)] + Ci(—2pT7) [pT cos(2pT) — sin(2pT)]

)\2

+ Si(2p7) [cos(2pT) + pT Si"(2P7)]] + WI

)\2
T 16m2H2p3 4

+ Si(2pr) [2pT cos(2pT) + (=1 + p>72) sin(2pr)] ] + 0+ F3[7, 70]
2

_ - {
T 16m2H2p3 T4

+ Si(2p7) [(71 + p272) cos(2pt) — 2pT sin(2pr)} ] + Fa[r, 0]

r‘l(2pe) TP Fz[T7 T()]

D1 {(1 + p?72) [ve + In(=2p7)] + Ci(=2p7) [(—=1 + p*>72) cos(2pT) — 2pT sir

A

2pt + Ci(—2p7) [sin(2p7) — p7(2 cos(2pT) + pTsin(2pT))]
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Non-local terms dominate the power-spectrum

[S.B., Calderén & Luo, 2407.12091]

v The power spectrum:

Lo | —— AH=107
AH=10"3
Lo | — AH=1072
— MH=10"1
| — wH=05
108 — AH=07
MH=1
1091 4
3
Q 1071 4
1051 4
1031 =
1011 4

0 25 50 75 100 125 150 175
log(a/a~)
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Non-local terms dominate the power-spectrum @

[S.B., Calderén & Luo, 2407.12091]

v The corrections persist even if the local terms are turned-oft = The
dissipation kernel Aj affects this quantity!
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Non-local terms dominate the power-spectrum @

[S.B., Calderén & Luo, 2407.12091]

v The corrections persist even if the local terms are turned-oftf = The
dissipation kernel Aj affects this quantity!

v Using SPT, the power spectrum has secular divergence:
=il
PPT o e 0:93147060x1077 (1 __ 844291201 x 10~ N?).
The master equation formalism automatically resums these divergences.
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Non-local terms dominate the power-spectrum @

[S.B., Calderén & Luo, 2407.12091]

v The corrections persist even if the local terms are turned-oft = The
dissipation kernel Aj affects this quantity!

v Using SPT, the power spectrum has secular divergence:
=il
PPT o e 0:93147060x1077 (1 __ 844291201 x 10~ N?).
The master equation formalism automatically resums these divergences.

v" Resummation is an exact result within the TCL, approximation.
Matches previous results without requiring arbitrary assumptions!
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Non-local terms dominate the power-spectrum

[S.B., Calderén & Luo, 2407.12091]
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Local contributions dominate decoherence @

[S.B., Calderén & Luo, 2407.12091]
v Purity is good measure for decoherence.

1

\/4det[X2]

% =Trs [(57)°] =
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Local contributions dominate decoherence

[S.B., Calderén & Luo, 2407.12091]

v Purity is good measure for decoherence.

— T —
1.0F
— AH=0.1
sl — A/H=0.01 1
A/H=0.001
— AN/H=0.0001
0.6+ 1
>
0.4 .
0.2+ 5
0.0 5
I I | I
0 5 10 15
log(a/ax)

Figure 8: There is rapid decoherence phase occurring right after horizon crossing. As expected, for a

system with weaker interaction with environment, the loss in purity occurs at later times.
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Local contributions dominate decoherence

[S.B., Calderén & Luo, 2407.12091]
v Purity is good measure for decoherence.

1

\/4det[X2]

% =Trs [(57)°] =

— Purity is dominated by the diffusion terms from the noise kernel.

2

Dy = 77[
- 8m2H?pr3

e + In(—2p7) — Ci(—2p7) [cos(2pT) + p7 sin(2pT)]
+ Si (2p7) [pr cos(2pT) — sin(2p7)]] + s + Ailr, o]

At late-times:

2 n A’p
4w H272  8mw2H21

D11 ~ + O(T)
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Figure 9: The pink plot, labelled as 4o, is the purity for system with no interaction with environment,
At which is what is expected when the state remains pure. The green plot is the effect coming from

non-local part in TCLo equation, we can see that it leads to oscillations due to information exchange
between the system and environment. Comparing the purity when all the terms are retained (blue
plot) with the one when only the local terms are kept (yellow plot), shows that the non-local terms
have very little effect on the way purity evolves. This is why the system undergoes decoherence and

inevitably evolves to a mixed state once the mode crosses the horizon.
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Non-Markovianity: Cosmic consequences @
— Purity difficult to compute sometimes = Need new measures such as

“complexity” for decoherence
[Bhattacharya, S.B., Haque, Lund & Paul, 2024 (JHEP)]
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v In solvable Gaussian models, novel phenomenon: Recoherence (purity
freezing) due to non-Markovian memory kernel! [Colas, Grain & Vennin; Colas,
Grain, Kaplanek & Vennin]

v" New cosmic phenomenon due to non-Markovianity!
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— Purity difficult to compute sometimes = Need new measures such as
“complexity” for decoherence
[Bhattacharya, S.B., Haque, Lund & Paul, 2024 (JHEP)]

v In solvable Gaussian models, novel phenomenon: Recoherence (purity
freezing) due to non-Markovian memory kernel! [Colas, Grain & Vennin; Colas,
Grain, Kaplanek & Vennin]

v" New cosmic phenomenon due to non-Markovianity!

v" Non-Markovian systems show transient negative entropy growth —
Second Law for gravitational sub-systems? [with Calderén, Luo & Seery]
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Non-Markovianity: Cosmic consequences

— Purity difficult to compute sometimes = Need new measures such as
“complexity” for decoherence
[Bhattacharya, S.B., Haque, Lund & Paul, 2024 (JHEP)]

v In solvable Gaussian models, novel phenomenon: Recoherence (purity
freezing) due to non-Markovian memory kernel! [Colas, Grain & Vennin; Colas,
Grain, Kaplanek & Vennin]

v" New cosmic phenomenon due to non-Markovianity!

v" Non-Markovian systems show transient negative entropy growth —
Second Law for gravitational sub-systems? [with Calderén, Luo & Seery]

v Are slow-roll attractor models special? [with Calderén, Luo & Seery]

@ What if there is a non-attractor ultra-slow roll phase? Does the same
model, with non-Markovianity, show visible consequences for purity?

@ The free theory noise term in the Fokker-Planck equation is
suppressed as e " in whereas amplitude increases as e’" for
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Non-Markovianity: Cosmic consequences
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Left: Noise for various v values at a representative coupling strength A/H = 0.1, on log scale. The
inset illustrates that USR (SR) curves evolve towards positive (negative) values. Right: Ratio of the computed
noise to the corresponding free-theory prediction. The box zooms in on the SR curves departing significantly
from a ratio of 1.
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Non-Markovianity: Cosmic consequences

— Purity difficult to compute sometimes = Need new measures such as
“complexity” for decoherence
[Bhattacharya, S.B., Haque, Lund & Paul, 2024 (JHEP)]

v In solvable Gaussian models, novel phenomenon: Recoherence (purity
freezing) due to non-Markovian memory kernel! [Colas, Grain & Vennin; Colas,
Grain, Kaplanek & Vennin]

v" New cosmic phenomenon due to non-Markovianity!

v" Non-Markovian systems show transient negative entropy growth —
Second Law for gravitational sub-systems? [with Calderén, Luo & Seery]

v Are slow-roll attractor models special? [with Calderén, Luo & Seery]

@ What if there is a non-attractor ultra-slow roll phase? Does the same
model, with non-Markovianity, show visible consequences for purity?

@ The free theory noise term in the Fokker-Planck equation is
suppressed as e " in whereas amplitude increases as e’" for

v Does decoupling of UV modes still still work? Loop corrections under
control in EFT of inflation = Does non-Markovian open EFT remain so?
[S.B., Berera & Calderén, 2206.05797 (JHEP)]
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Example: Thermal states and primordial B-fields @
[with Berera, Qiu & Ramos]

— Gauge-fields A, do not feel curved space — The magnetic field energy
density goes as pg o 1/a*.
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v' Quantum fluctuations of the magnetic field produced during inflation is
quickly redshifted away.

e Magnetic fields at 10 kpc wavelengths have an unobservably small
magnitude B ~ 10 >3G.

— To produce primordial magnetic fields during inflation, one needs to go
beyond the Standard Model and . Even then it
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v/ But what about dissipative effects?

v For warm inflation, sensible to have a thermal state for the gauge
photons instead of a quantum vacuum state at T ~ H.
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Example: Thermal states and primordial B-fields

[with Berera, Qiu & Ramos]

— Gauge-fields A, do not feel curved space — The magnetic field energy
density goes as pg o 1/a*.

v' Quantum fluctuations of the magnetic field produced during inflation is
quickly redshifted away.

e Magnetic fields at 10 kpc wavelengths have an unobservably small
magnitude B ~ 10 >3G.

— To produce primordial magnetic fields during inflation, one needs to go
beyond the Standard Model and . Even then it
is very difficult to have magentogenesis!

v/ But what about dissipative effects?

v For warm inflation, sensible to have a thermal state for the gauge
photons instead of a quantum vacuum state at T ~ H.

e Leads to an O(10%*) amplification in the energy density of primordial
magnetic fields (at 10 kpc scales)!
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The Big Picture @
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The early-universe as an open quantum system @

— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff.
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The early—universe as all Oopen quantum System
— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff .

— Observed statistics depend on our position in the universe, on UV
physics, etc. especially since GR is non-linear.
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The early-universe as an open quantum system @

— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff.

— Wilsonian EFT does not apply directly to cosmology — “Integrated
out” subhorizon modes are not excluded by any conservation law.
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The early—universe as all Oopen quantum System @
— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff .

— Wilsonian EFT does not apply directly to cosmology — “Integrated
out” subhorizon modes are not excluded by any conservation law.
* Non-unitary evolution: p(t) = psys = Trep(t)
* System dof’s can exchange energy & lose information to environment
= Incorporate Dissipation & Decoherence: Both affects observations.
* Evolution ME: dpsys/dt ~ [H, psys] + f (Ln, psys)
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The early—universe as all Oopen quantum System
— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff .
— Wilsonian EFT does not apply directly to cosmology — “Integrated
out” subhorizon modes are not excluded by any conservation law.
* Non-unitary evolution: p(t) = psys = Trep(t)

* System dof’s can exchange energy & lose information to environment

= Incorporate Dissipation & Decoherence: Both affects observations.

* Evolution ME: dpsys/dt ~ [H, psys] + f (Ln, psys)

Warm Inf Cold Inf

WI assumes thermal eq while cold models ignore dissipative effects.
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The early-universe as an open quantum system

— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff.

— Wilsonian EFT does not apply directly to cosmology — “Integrated
out” subhorizon modes are not excluded by any conservation law.

Out-of-equilibrium environments — Non-Markovian master equations
for cosmology! Captures non-unitary, non-local dissipative effects and
their observational signatures.
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for cosmology! Captures non-unitary, non-local dissipative effects and
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v Goes beyond perturbation theory — Resumming IR effects!

v' Open EFT techniques not exclusive to inflation — Ekpyrosis: upper
bound on Epounce. [Brandenberger, S.B. & Wang, 2009.12653 (JCAP)]
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The early-universe as an open quantum system

— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff.

— Wilsonian EFT does not apply directly to cosmology — “Integrated
out” subhorizon modes are not excluded by any conservation law.

Out-of-equilibrium environments — Non-Markovian master equations
for cosmology! Captures non-unitary, non-local dissipative effects and
their observational signatures.

v Goes beyond perturbation theory — Resumming IR effects!

v' Open EFT techniques not exclusive to inflation — Ekpyrosis: upper
bound on Epounce. [Brandenberger, S.B. & Wang, 2009.12653 (JCAP)]

v Useful tools for studying spacetime emergence from de Sitter
holography! [S.B., Hackl, Hassan & Luo, 2409.13932]
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Finite complexity as evidence for cosmic ER=FEPR @

[S.B., Hackl, Hassan & Luo, 2409.13932]

CFTL® CFTR
Tt

North Pole
South Pole

Complexity of dS vacuum is finite both in the IR and the UV:
Has = Herr, @ Herr,
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