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Quantum origins of the Universe
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↪→ Where did we come from?
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Quantum origins of the Universe

Photo Credit: ESA/PLANCK

↪→ Quantum seeds of structure in the early universe
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Quantum effects in the early universe

↪→ Inflation: Phase of accelerated expansion

✓ Inflation: Not only solves standard cosmological puzzles but also explains
late-time inhomogeneities as originating from quantum vacuum fluctuations

⇒ Rare interplay between microscopic and macroscopic scales!

• Microphysics beyond Einstein’s equations:

Why did inflation begin?

How is potential so flat?
Derive inflation from fundamental physics?

↪→ Standard lore: ϕ(x, t) = ϕcl(t) + δ̂ϕ(x, t) → Consistency?

✓ Stochastic Inflation: Quantum fluctuations source the background →
Coarse-grained long-wavelength modes follow stochastic Langevin/FP

equation with “Gaussian” white noise. [Starobinsky]

Consistent early-universe paradigm: Requires new perspectives of
(open) EFTs in curved space to explain non-unitary phenomenon
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Cosmological open quantum
systems
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Effective theories beyond Wilson: Non-unitarity

• Effective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.

↪→ When dissipative effects (energy and information transfers) are
significant, the low-energy EFT is neither unitary nor local.

✓ UV/IR mixing → No well-segregated energy sectors.
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• Effective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.

↪→ When dissipative effects (energy and information transfers) are
significant, the low-energy EFT is neither unitary nor local.

✓ UV/IR mixing → No well-segregated energy sectors.

↪→ Comoving gauge: ds2 = −a2(τ)
[
dτ 2 − (1 + 2ζ)dx2

]
.

Canonical variable χ = z(τ)ζ, where z2 = 2ϵa2M2
Pl.

↪→ The quadratic action S(2) =
∫
d4x

[
(∂µχ)

2 − z′′

z
χ2

]
: collection of

harmonic oscillators with a time-dependent mass term.

Ĥ(2) =
1

2

∫
d3k

(2π)3

 k
[
ĉkĉ

†
k + ĉ−kĉ

†
−k

]
︸ ︷︷ ︸

Usual scalar field in flat space

− i
z ′

z

[
ĉkĉ−k − ĉ†k ĉ

†
−k

]
︸ ︷︷ ︸

Squeezing due to curved space


✓ k ≪ z ′/z ≈ aH: Squeezing term dominant ⇒ super-Hubble modes in the
squeezed state.

✓ k ≫ z ′/z ≈ aH: first term dominant ⇒ sub-Hubble modes in their
quantum (BD) vacuum.
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Effective theories beyond Wilson: Non-unitarity

• Effective theories: Identify the relevant dofs to describe physics at certain
energy scales, while decoupling details of higher-energy scales.

↪→ When dissipative effects (energy and information transfers) are
significant, the low-energy EFT is neither unitary nor local.

✓ UV/IR mixing → No well-segregated energy sectors.

Stot = S [ζ] + S [σ] + SIF [ζ, σ]

Environmetal sector: σ & System mode: ζ

• Goal: Trace out the hidden sector & still use some hierarchy to organize
system dynamics

Derive an open inflationary EFT capable of incorporating dissipative &
diffusive effects ⇒ Find their observational signatures.

Suddhasattwa Brahma Nonlocal quantum effects in the early Universe 3/23



Inflation creates exponentially large scales
↪→ How long did inflation last?

↪→ How long did inflation last? Why should things change just beyond

what we can observe? Cosmological principle : We are not special!

✓ Microscopic (particle) physics ⇒ Long-short mode-coupling

✓ Observations probe effective theory for one given Hubble patch for
realistic models.
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Spacetime Horizons imply open EFTs

✓ Gravity creates spacetime boundaries ⇒ Horizons limit what we can
observe without restricting the flow of energy and information across it

✓ Horizons are sometimes observer-dependent ⇒ Different open EFTs for
different observers!

↪→ Open systems not a new concept → Entanglement structure of the
quantum vacuum in BH or dS space. [Srednicki; Maldacena & Pimentel; Calzetta &

Hu; Brandenberger, Mukhanov & Prokopec; . . . ]

↪→ Renewed interest from new perspectives [Chandrasekharan, Longo, Pennington

& Witten; Jensen, Sorce & Speranza; Susskind; Alicki, Barenboim & Jenkins; . . . ]

• Open EFTs for inflation [S.B., Caledron, Luo, Kaplanek, Burgess, Holman, Martin,

Vennin, Colas, Grain, Shandera, Boyanovsky, Nelson, Hu, Hsiang, McDonald, Prokopec, . . . ]
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Why should you care?

✓ Learn about the early-universe from observations of CMB/LSS.

✓ Many non-trivial predictions of inflation comes from non-perturbative
regimes ⇒ Primordial BHs, massive galaxy clusters

✓ Given realistic models, open EFTs will give indirect predictions through
tails of PDFs over and above direct predictions for non-Gaussianities

✓ Dissipative/thermal effects ⇒ large primordial B fields, vector modes →
affects structure, cosmic tensions, . . . [with Alexander, Berera, Toomey . . .]

✓ Better capture effects of clustering on GW propagation → Affects
stochastic GW detections [with Kalomenopoulos, Khochfar]

• When does dissipative effects affect observations? Signatures for
“quantum” origin of inflation? [Salcedo, Colas & Pajer, 2024]

• Resolves conceptual issues: stochastic framework, EI,
UV-completion? “Swampland constraints”
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Why should you care?
✓ Learn about the early-universe from observations of CMB/LSS.
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✓ Given realistic models, open EFTs will give indirect predictions through
tails of PDFs over and above direct predictions for non-Gaussianities

✓ Dissipative/thermal effects ⇒ large primordial B fields, vector modes →
affects structure, cosmic tensions, . . . [with Alexander, Berera, Toomey . . .]

✓ Better capture effects of clustering on GW propagation → Affects
stochastic GW detections [with Kalomenopoulos, Khochfar]

• When does dissipative effects affect observations? Signatures for
“quantum” origin of inflation? [Salcedo, Colas & Pajer, 2024]

• Resolves conceptual issues: stochastic framework, EI,
UV-completion? “Swampland constraints”
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Secular divergences &
Non-perturbative resummations
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Late-time (secular) divergences
↪→ Many gravity puzzles appear at late-times: Eternal inflation, BH Inf loss

• Late-time secular growth ⇒ Breakdown of SPT in cosmology. [Woodard,

Tsamis, Glavan, Miao, Prokopec, Kaplanek, Burgess, Holman, Leblond, Shandera, . . . ]

↪→ Example: Momentum-space entanglement entropy – The coupling
between long and short modes provided by the leading order cubic
non-linearity arising solely from GR: Hint ∝ ϵ2 a ζ (∂ζ)2

↪→ Consider bands of momenta as subalgebras to define the subsystem and
partition the full Hilbert space. [Balasubramanian, McDermott & Raamsdonk, 2011;

Santhosh Kumar & Shankaranarayanan, 2017]

Entanglement entropy (per unit physical vol) : sent ∼ ϵ H2 Mpl (a/ai )
2

[S.B., Alaryani & Brandenberger, 2005.09688 (PRD)]

• Similar results for EE of spectator field with ϕ3 interaction in de Sitter!
[S.B., Calderón, Hassan & Mi, 2302.13894 (PRD)]

• Rapid Growth: Perturbative EE ≈ reheating (thermal) entropy ⇒
Breakdown of perturbation theory around scrambling time of dS
[1/H ln(Mpl/H)].
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Trans-Planckian Censorship

[Bedroya, Brandenberger, LoVerde, Vafa, 2019]

• Entropy growth typically signals deep puzzles for fundamental physics!
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What does non-perturbative resummation mean?

↪→ Heuristic example: Particle Decay

✓ We trust the solution N(t) = N(0)e−Γt for the equation

d

dt
N(t) = −ΓN(t) for late times (Γt ≫ 1)

even though the decay rate is computed in SPT, i.e., Γ ∼ O(λ2)

✓ Evolution equation does not depend explicitly on t (time-locality) ⇒
Broader domain of validity!

✓ Intuitive understanding behind trusting

N(t) = N(0)e−Γt vs N(t) = N(0) (1− Γt)

for Γt ≫ 1.
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Non-perturbative resummation in cosmology
↪→ Assume at τ0, no coupling exists (there are no superhorizon modes)

✓ Born approximation (Weak coupling): ρI (τ) = ρS(τ)⊗ ρE(τ0)

✓ Markovian approximation (time-locality): ρ(τ ′) → ρ(τ)

ρ′S = −i [Heff(τ), ρS ] +
∑
k

γk(τ) (· · · ) , with γk > 0

↪→ The power spectrum: [S.B., Berera & Calderón, 2107.06910 (CQG)]

∆2
ζ(qτ) =

q3

2π2z2

〈
ṽS
q (τ)ṽS

−q(τ)
〉
= q3

2π2z2
Tr

[
ṽS
q (τ)ṽS

−q(τ)ρr (τ)
]

✓ The zeroth order approximation: ∆2
ζ(q) ≈ 1

2ϵM2
Pl

(
H
2π

)2
✓ The first order correction: ∆2

ζ(qτ) =
1

2ϵM2
Pl

(
H
2π

)2
(1− αN2

c ) where

α ≈ 0.00211886 ϵH2/(2M2
Pl) and Nc = ln(−1/qτ).

↪→ Treat ME as a bona fide dynamical map:

✓ Ignoring the decaying mode, possible to solve transport equation for

the power spectrum as ∆2
ζ(qτ) =

1
2ϵM2

Pl

(
H
2π

)2
e−αN2

c where

α = ϵH2/(96π2M2
Pl) ∼ 0.00211086 ϵH2/(2M2

Pl).

MEs allows non-perturbative resummation ⇒ Matches exact results
better than standard perturbation theory in toy models [Colas, Grain &

Vennin, 2022]
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better than standard perturbation theory in toy models [Colas, Grain &

Vennin, 2022]
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Why non-Markovianity in
cosmology?
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Environments in cosmology

↪→ Why do we need have time nonlocal MEs?

Suddhasattwa Brahma Nonlocal quantum effects in the early Universe 13/23



Environments in cosmology

↪→ Why do we need have time nonlocal MEs?

ρsys = TrEρ(t)

dρsys
dt

= −i TrE [H, ρ(t)]

✓ The RHS does not depend on ρsys alone!

Suddhasattwa Brahma Nonlocal quantum effects in the early Universe 13/23



Environments in cosmology
↪→ Why do we need have time nonlocal MEs?

ρsys = TrEρ(t)

dρsys
dt

= −i TrE [H, ρ(t)]

✓ The RHS does not depend on ρsys alone!

✓ The full system is given by H = HS + HE + HI where

HI =

∫
d3x JS(t, x)⊗ JE(t, x)

✓ Tracing over E , Nakajima-Zwanzig equation (suppressing spatial indices):

d

dt
ρ̃sys(t) = −

∫ t

t0

dt′
{[

JS(t)JS(t
′)ρ̃sys(t

′)− JS(t
′)ρ̃sys(t

′)JS(t)
]
K>(t, t′)

−
[
JS(t)ρ̃sys(t

′)JS(t
′)− ρ̃sys(t

′)JS(t
′)JS(t)

]
K>(t, t′)∗

}
+ . . .

with the kernel K>(t, t′) := ⟨JE(t)JE(t′)ρE(t)⟩E .
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d
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{[
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JS(t)ρ̃sys(t

′)JS(t
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′)JS(t)

]
K>(t, t′)∗

}
+ . . .

with the kernel K>(t, t′) := ⟨JE(t)JE(t′)ρE(t)⟩E .

↪→ If environment correlations K>(t, t′) are sharply peaked around t = t′

such that the rest of the integrand varies slowly compared to the width of
K>(t, t′), then system becomes time-local!
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Environments in cosmology

↪→ Why do we need have time nonlocal MEs?

↪→ If environment correlations K>(t, t′) are sharply peaked around t = t′

such that the rest of the integrand varies slowly compared to the width of
K>(t, t′), then system becomes time-local!

✓ When environment has large dofs, thermal equilibrium ⇒ Achieves
stationarity i.e., No backreaction of the system on “bath”

• Markovianity: No information backflow ⇒ Fast decay of (environment)
temporal correlations. Past history not important.
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Infinitely many E fields required for large dofs since k couples to −k at
quadratic order.
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Environments in cosmology
↪→ Why do we need have time nonlocal MEs?

↪→ If environment correlations K>(t, t′) are sharply peaked around t = t′

such that the rest of the integrand varies slowly compared to the width of
K>(t, t′), then system becomes time-local!

✓ When environment has large dofs, thermal equilibrium ⇒ Achieves
stationarity i.e., No backreaction of the system on “bath”

• Markovianity: No information backflow ⇒ Fast decay of (environment)
temporal correlations. Past history not important.

✓ Background symmetries in cosmology: Homogeneity & Isotropy ⇒
Infinitely many E fields required for large dofs since k couples to −k at
quadratic order.

✓ Heuristic argument shows that cosmological environments are typically
out-of-equilibrium ⇒ non-Markovian MEs necessary !

How do we know that cosmological MEs are non-Markovian?
Check kernel of environment correlations!
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Markovianity & benchmarking loop corrections
↪→ Assuming Markovianity, one finds the Lindblad ME.

• Perturbative correction to graviton propagator from tensor loops:

∆2
t ≃ − 256

5π4

(
H
Mp

)4 {[
2 + cos 2 + Ci 2− sin 2

]
ln
(

H
µ

)
+O(1)

}
[S.B., Berera & Calderón, 2206.05797 (JHEP)]

✓ Exactly matches loop corrections to graviton propagator under
Markovian approximation [Fröb, Roura & Verdaguer, 2012; Tan, 2020; Tanaka &

Urakawa, 2013; . . . ] No spurious ln(k/µ) term [Adshead, Easther & Lim, 2009; . . . ]

↪→ Go back to check Markovian assumption underlying Lindblad form:

K>(τ, τ ′)
Coarse−−−−→
graining

δ(τ − τ ′)?

✓ Memory Kernel is sharply-peaked but not delta-function peaked:

K>
k (τ, τ ′) ≈ −

ie2i(τ−τ′)/τ
[
3k(τ − τ ′) cos(k(τ − τ ′)) + (k2(τ − τ ′)2 − 3) sin(k(τ − τ ′))

]
π2k5(τ − τ ′)6
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Markovian approximation [Fröb, Roura & Verdaguer, 2012; Tan, 2020; Tanaka &

Urakawa, 2013; . . . ] No spurious ln(k/µ) term [Adshead, Easther & Lim, 2009; . . . ]

↪→ Go back to check Markovian assumption underlying Lindblad form:

K>(τ, τ ′)
Coarse−−−−→
graining

δ(τ − τ ′)?

✓ Memory Kernel is sharply-peaked but not delta-function peaked:

K>
k (τ, τ ′) ≈ −

ie2i(τ−τ′)/τ
[
3k(τ − τ ′) cos(k(τ − τ ′)) + (k2(τ − τ ′)2 − 3) sin(k(τ − τ ′))

]
π2k5(τ − τ ′)6

Suddhasattwa Brahma Nonlocal quantum effects in the early Universe 14/23



Can non-local terms affect
late-time dynamics?
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Non-local origin of secular terms

↪→ Stochastic Inflation → Provides leading order resummation of IR
divergences with local equations.

↪→ Graviton loop corrections to CCS or photons in dS show that secular
terms come from time-local terms. Non-local terms decay at late-times.
[Glavan, Miao, Prokopec & Woodard; Wang & Woodard; Kahya & woodard; . . . ]

↪→ Even if there are non-local terms during inflation, do they survive at
late-times?

• Using a toy-model, we showed that [S.B., Calderón & Luo, 2407.12091] :

✓ Secular divergences can just as easily stem from non-Markovian
terms and, more importantly, such terms can still be resummed at late
times following a precise algorithm that does not involve any arbitrary
approximations.

✓ The memory kernel, corresponding to the integrated-out (or
coarse-grained) fields, in the same model can affect other physical
quantities differently. More specifically, local and non-local parts of
the kernel can become dominant for different physical observables.
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Toy Model for Stochastic Inflation

• Toy model: Environment ψ is CCS and System χ is a massless, minimally
coupled scalar. [Boyanovsky, 2015-2016; Hollowood & McDonald, 2017]

The memory kernel:

Kp(τ, τ
′) = 2

∫
d3k

(2π)3
ψk(τ)ψ

∗
k (τ

′)ψq(τ)ψ
∗
q (τ

′) , p = |k+ q|

= − i

8π2
e−ip(τ−τ ′)P

(
1

τ − τ ′

)
+

1

8π
δ(τ − τ ′)

• Simplifications:

✓ Since the system field appears at most at quadratic order in the the
full Lagrangian, the evolution equation for the density matrix can be
written as a sum over independent momentum modes p without any
mode-coupling.

✓ The associated memory kernel of the environment field has the
advantage of cleanly splitting into two different contributions, one
that is clearly time-local while the other non-local.
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S =

∫
dτ d3x
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2

[
χ′2 − (∇χ)2 + a′′

a
χ2 + ψ′2 − (∇ψ)2

]
+ λ a χ : ψ2 :

}
with BD initial conditions
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e−ikτ

√
2k

(
1− i

kτ

)
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e−ikτ

√
2k
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Time-convolutionless master equation

• The TCL2 master equation:

dρred
dτ

=
∑
p

(
− iH

(2)
ij

[
ẑi ẑ

†
j , ρ̂red(τ)

]
+ γij(τ)

(
ẑi ρ̂red(τ)ẑ

†
j − 1

2
{ẑ†j ẑi , ρ̂red(τ)}

))
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Time-convolutionless master equation

• The TCL2 master equation:

dρred
dτ

=
∑
p

(
− iH

(2)
ij

[
ẑi ẑ

†
j , ρ̂red(τ)

]
+ γij(τ)

(
ẑi ρ̂red(τ)ẑ

†
j − 1

2
{ẑ†j ẑi , ρ̂red(τ)}

))

with the effective quadratic Hamiltonian given by

H
(2)
ij =

1

2

[
ẑ2ẑ

†
2 + (k2 +∆11)ẑ1ẑ

†
1 +

(
a′

a
+∆12

)(
ẑ1ẑ

†
2 + ẑ2ẑ

†
1

)]
and the dissipator matrix: γij ≡ Dij − i∆12 ωij .
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Time-convolutionless master equation
• The TCL2 master equation:

dρred
dτ

=
∑
p

(
− iH

(2)
ij

[
ẑi ẑ

†
j , ρ̂red(τ)

]
+ γij(τ)

(
ẑi ρ̂red(τ)ẑ

†
j − 1

2
{ẑ†j ẑi , ρ̂red(τ)}

))

D11 = −
λ2

8π2H2pτ3

[
γE + ln(−2pτ)− Ci(−2pτ) [cos(2pτ) + pτ sin(2pτ)]

+ Si(2pτ) [pτ cos(2pτ)− sin(2pτ)]
]
+

λ2

4πH2τ2
+ F1[τ, τ0]

∆11 =
λ2

8π2H2pτ3

[
pτ [γE − ln(−2pτ)] + Ci(−2pτ) [pτ cos(2pτ)− sin(2pτ)]

+ Si(2pτ) [cos(2pτ) + pτ sin(2pτ)]
]
+

λ2

4π2H2τ2
ln(2pϵ) + F2[τ, τ0]

D12 =
λ2

16π2H2p3τ4

[
(1 + p2τ2) [γE + ln(−2pτ)] + Ci(−2pτ)
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(−1 + p2τ2) cos(2pτ)− 2pτ sin(2pτ)

]
+ Si(2pτ)

[
2pτ cos(2pτ) + (−1 + p2τ2) sin(2pτ)

] ]
+ 0 + F3[τ, τ0]

∆12 =
λ2

16π2H2p3τ4

[
2pτ + Ci(−2pτ) [sin(2pτ)− pτ(2 cos(2pτ) + pτ sin(2pτ))]

+ Si(2pτ)
[
(−1 + p2τ2) cos(2pτ)− 2pτ sin(2pτ)

] ]
+ F4[τ, τ0]
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Non-local terms dominate the power-spectrum
[S.B., Calderón & Luo, 2407.12091]

✓ The power spectrum:
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Local contributions dominate decoherence
[S.B., Calderón & Luo, 2407.12091]

✓ Purity is good measure for decoherence.

γp = TrS
[
(ρSp )

2
]
=

1√
4det[ΣS ]

↪→ Purity is dominated by the diffusion terms from the noise kernel.

D11 = − λ2

8π2H2pτ 3

[
γE + ln(−2pτ)− Ci(−2pτ) [cos(2pτ) + pτ sin(2pτ)]

+ Si (2pτ) [pτ cos(2pτ)− sin(2pτ)]
]
+ λ2

4πH2τ2 + F1[τ, τ0]

At late-times:

D11 ≈
λ2

4πH2τ 2
+

λ2p

8π2H2τ
+O(τ)
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Non-Markovianity: Cosmic consequences
↪→ Purity difficult to compute sometimes ⇒ Need new measures such as
“complexity” for decoherence
[Bhattacharya, S.B., Haque, Lund & Paul, 2024 (JHEP)]

✓ In solvable Gaussian models, novel phenomenon: Recoherence (purity
freezing) due to non-Markovian memory kernel! [Colas, Grain & Vennin; Colas,

Grain, Kaplanek & Vennin]

✓ New cosmic phenomenon due to non-Markovianity!

✓ Non-Markovian systems show transient negative entropy growth →
Second Law for gravitational sub-systems? [with Calderón, Luo & Seery]

✓ Are slow-roll attractor models special? [with Calderón, Luo & Seery]

What if there is a non-attractor ultra-slow roll phase? Does the same
model, with non-Markovianity, show visible consequences for purity?

The free theory noise term in the Fokker-Planck equation is
suppressed as e−N in SR whereas amplitude increases as e7N for USR.

✓ Does decoupling of UV modes still still work? Loop corrections under
control in EFT of inflation ⇒ Does non-Markovian open EFT remain so?
[S.B., Berera & Calderón, 2206.05797 (JHEP)]
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Example: Thermal states and primordial B-fields

[with Berera, Qiu & Ramos]

↪→ Gauge-fields Aµ do not feel curved space → The magnetic field energy
density goes as ρB ∝ 1/a4.

✓ Quantum fluctuations of the magnetic field produced during inflation is
quickly redshifted away.

• Magnetic fields at 10 kpc wavelengths have an unobservably small
magnitude B ∼ 10−53G .

↪→ To produce primordial magnetic fields during inflation, one needs to go
beyond the Standard Model and modify Maxwell’s equations. Even then it
is very difficult to have magentogenesis!

✓ But what about dissipative effects?

✓ For warm inflation, sensible to have a thermal state for the gauge
photons instead of a quantum vacuum state at T ∼ H.

• Leads to an O(1035) amplification in the energy density of primordial
magnetic fields (at 10 kpc scales)!
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The Big Picture
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The early-universe as an open quantum system

↪→ Observable dofs in the universe is necessarily part of a larger system
with an environment → Modes of interest coupled to unobservable stuff .

↪→ Wilsonian EFT does not apply directly to cosmology → “Integrated
out” subhorizon modes are not excluded by any conservation law.

Out-of-equilibrium environments → Non-Markovian master equations
for cosmology! Captures non-unitary, non-local dissipative effects and
their observational signatures.

✓ Goes beyond perturbation theory → Resumming IR effects!

✓ Open EFT techniques not exclusive to inflation → Ekpyrosis: upper
bound on Ebounce. [Brandenberger, S.B. & Wang, 2009.12653 (JCAP)]

✓ Useful tools for studying spacetime emergence from de Sitter
holography! [S.B., Hackl, Hassan & Luo, 2409.13932]
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✓ Useful tools for studying spacetime emergence from de Sitter
holography! [S.B., Hackl, Hassan & Luo, 2409.13932]
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The early-universe as an open quantum system
↪→ Observable dofs in the universe is necessarily part of a larger system
with an environment → Modes of interest coupled to unobservable stuff .

↪→ Wilsonian EFT does not apply directly to cosmology → “Integrated
out” subhorizon modes are not excluded by any conservation law.
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Finite complexity as evidence for cosmic ER=EPR

[S.B., Hackl, Hassan & Luo, 2409.13932]

Complexity of dS vacuum is finite both in the IR and the UV :
HdS = HCFT1 ⊗HCFT2
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