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Introduction

» The direct detection of gravitational waves (GWs) by the LIGO and Virgo collaborations marked a major
milestone in cosmology, launching the era of gravitational wave astronomy.

» The first observed event, originating from the merger of two ~ 30 Mg black holes, demonstrated the
existence of astrophysical sources of GWs and opened a new window for probing the universe.

» Beyond astrophysical sources, gravitational waves can also originate from the early universe. In particular,
Primordial GWs are a fundamental prediction of inflationary cosmology.

» These relic GWs carry imprints of the universe's earliest moments, encoding information about inflation,
high-energy physics, and processes beyond the Standard Model.

» Several mechanisms can generate primordial gravitational waves:

e Quantum fluctuations during inflation.
o Graviton production during the reheating phase.
o First-order phase transitions after inflation.

These processes provide key insights into the dynamics of the early universe and the underlying physics
driving its evolution.
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Astrophysical Gravitational Waves

» Gravitational waves can be generated by astrophysical sources such as merging black holes, neutron stars,
and other compact objects.

» These waves are produced by the acceleration and interaction of massive bodies in strong gravitational fields.

» Among the most prominent sources are binary black hole mergers, which have been observed multiple times
by detectors like LIGO and Virgo.

» In the first detection, two black holes with masses of 36 M, and 29 M merged to form a single black hole
of 62 M. The remaining ~ 3 M was emitted as gravitational radiation.
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» These tiny ripples in spacetime traveled billions of years before reaching Earth, where they were finally
detected, confirming a key prediction of general relativity.
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Primordial & Stochastic Gravitational Waves

» Primordial Gravitational Waves:
o Generated in the early universe, typically during or shortly after cosmic inflation.

o They carry unique information about the universe's origin and fundamental physics at high energies.

» Stochastic Gravitational Waves:
o Background of GWs covering the entire universe.

o Generated by the superposition of many unresolved sources, such as cosmic strings, phase transitions,
and inflationary dynamics.

bang?
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» The Big Bang and cosmic inflation are key processes believed to generate stochastic gravitational waves
through a variety of random, early-universe phenomena.
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Gravitational Waves and Linearized Gravity

» Gravitational waves are naturally described within the framework of linearized gravity, which provides the
simplest and most tractable approach to studying perturbations in an expanding universe.

» Einstein field equations:

1
Ruv = 5 8uvR = 87GT

» Consider perturbations around a spatially flat FLRW (homogeneous and isotropic) background:

ds® = —dt® + a(t)* (65 + hy)dx'dx,  h; < 1

» The tensor perturbation h; satisfies: hi = 0, 8;h; = 0 = Transverse-traceless (TT) gauge = two
polarization states: + and X

» Equation of motion for gravitational waves: hU + 3Hi1;j + k2h;j = 167G I'IiJTT

» Homogeneous solution: Gravitational waves sourced by quantum vacuum fluctuations = production of
gravitons in an expanding universe.

» Inhomogeneous solution: Gravitational waves sourced by anisotropic stress from matter fields: I'IUT»T 'S
[scalars, vectors, fermions, tensors]
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Gravitational Waves From Single-field Slow-roll Inflation

Inflation

e era of accelerated (exponential) expansion

e explains why CMB is nearly uniform

blackbody spectrum: TCMB ~27K

nearly isotropic: AT ~ 10_5
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The Physics of Inflation

» Standard cosmology assumes a homogeneous and isotropic Universe, described by the Friedmann-Robertson-
Walker (FRW) metric:

ds? = —dt* + 2%(t) | ——
s +a(t) T K~

+ r*(d6? +sin? 6 deZ):|
» Under this symmetry, the energy-momentum tensor takes the form of a perfect fluid:
Tuv =(p+ P)uyu, + Pguy

» From Einstein's field equations, we obtain the Freedman equations:

8nG K a 4G
H =="p— =, —=——(p+3P
3P 2 3 3 (P +3P)
where H = 4/a is the Hubble parameter.

» Inflation is defined as a phase of accelerated expansion: & > 0, which requires the pressure to satisfy
P < —p/3.

» The simplest case is when P ~ —p, leading to an approximately exponential expansion:

a(t) = a eMilt—n)

» A scalar field provides a natural source of stress-energy to drive inflation. Its dynamics are governed by the
Lagrangian:

1
L= 756“%7 e — V(p)
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Scalar Field as a Source of Inflation

» For a scalar field ¢ with Lagrangian
1
L= *56"’«2 Ay — V(p),
the corresponding stress-energy tensor is:

oL 1
B
Tuv = ’273gw + 8 £ =0,p0u¢ + guv [fig“ Oatp Opp — V(w)]

» A homogeneous scalar field ¢(t) behaves like a perfect fluid with:

1, 1,
P = sz +V(p), P, = 5902 = V(e)

» Accelerated expansion requires P < —p/3, which is satisfied if:
.2
Vie) > ¢

» This condition is naturally achieved in regions where the potential is sufficiently flat?i.e., when the scalar
field evolves slowly (slow-roll inflation).

Vip)

slow-rolling
inflaton

reheating

Ao ¢
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» In such a situation, we can consider ¢ < 3H¢, and hence

8nG
-3

H? V(e), 3Hp + V, =0

» The slow-roll condition is satisfied provided that

(B M (vw)z
—_— H - = — | = 1,
v < ‘=5 \v) <

v,
Voo < H? = =M, 22«1,

where € and 7 are the so-called slow-roll parameters

» Successful inflation must last for a long enough period in order to solve the horizon and flatness problems.

» Typically, this feature is expressed in terms of the number of e-foldings, defined as:

tf
Niot z/ Hdt
b

i

where t; and t¢ are the starting and ending time of inflation, that, in case the scale-factor evolution is
described by

N =1n(af/a),

where a5 = a(t()\)). The lower bound required to solve the horizon problem number is N > 1n10?® ~ 60 .
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Perturbations

» The observed large-scale structures in the Universe and the anisotropies in the CMB originate from small
primordial fluctuations. These fluctuations evolved during the radiation and matter-dominated eras.

» Standard cosmology does not explain the origin of these perturbations. However, quantum fluctuations
of the inflaton field during inflation naturally generate them, providing a robust mechanism for structure
formation.

» The perturbed energy-momentum tensor for a scalar field minimally coupled to gravity is:

1 « - - -
0Tuy = Oubp0u@+ 0up0uép — 8uv <§g EaaSoaBS@"‘ V(‘/’))
1o aBy 25 -, .« _ oV
—8uv (fég $0a3 053 + g% 0a60 05% + —éw)
2 (o))
where p = @ + dp, with @ being the homogeneous background field and d¢ its perturbation.

» The equation of motion for the perturbed inflaton field is:
2

. ., oV
6p+3HOp+ —=dp =0
D2

where H = 4/a is the Hubble parameter.

» We work in the longitudinal (Newtonian) gauge, where the metric perturbations take the form:

go = —a(t) (1 +2p 4 ¢(2)>
gi = 0
1
g = (1) [(1 —2¢® — @5y 4 5 (8,-hj(.2) +9;h? + hf.}?>)}
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First order Perturbations

» Energy-Momentum at first order:
8V
5(1)7—8 _ 1/)(1) ¢2 _ 5(1)¢¢ _ 5(1) 22
5(1) TIO = —¢ 8f5(1)<p
ov ,
a

5(1) Tii _ _ 1/)(1) Sag + 5(1)¢¢0 _ 6(1)@ %

» Einstein’s Tensor at first order:
2 .
VG = 6 (2) oW +62 w —20;0'yp™
a
sWgd — _o Ea.(b(l) _ 2 8_,¢',(1)
1 a g 1
6(1)Gl[' _ 2é¢;(1) + 4§¢(1) _9 (é)2¢(1) + 8 af¢(1)
a a a
2200 50,60 4 oo™ 4 250 _ g o™
a
sWel = —9'9¢M 1 d'apW
» From last equation one finds: ¢(1) = d)(l), and

i NN oV L. a1
[wu) _2<2E+i <i> >¢(1)+v2w(1)] 2 (5(1)¢732+¢05<1>¢ <E+E <i> >)
a al\a e a al\a
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From these first-order perturbations of the Einstein and energy-momentum tensors, we derive a wave-like
equation for the scalar metric perturbation 1/;(1).

This equation governs the evolution of scalar fluctuations in an expanding universe and is a cornerstone in
understanding the generation of cosmic structure.

The equation:

. a a/a\ "t . oV a 4 /a\t
o+ (2 2)) o] (008w (01 (2) 7))
a al\a (o)) a al\a

shows that the metric perturbation 1[1(1) is sourced by scalar field perturbations 5(1)Lp, which encode quantum
fluctuations during inflation.

These fluctuations seed the curvature perturbations, which eventually give rise to the large-scale structure
of the universe.

The equality ¢(1> = w(l), valid in the absence of anisotropic stress, simplifies the metric and reflects the
scalar nature of inflationary perturbations.

Through gauge-invariant variables such as the comoving curvature perturbation (R = 1 + #&p), one can
track the evolution of these fluctuations and relate them to cosmological observables, like the CMB power
spectrum.
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Second order Perturbations

» Energy-Momentum at second order:

1 oV 1 2
sAT = 250 — 2P — 2 (6O 'MWy 0,6
0 PR L e B ( SO) ®
1 2 9%V 2
_ 2 (5D ogv 2 (1) .2 (1) <(1) .
5 (00e) 5z =2 () e+ 20600
1 i i . . i
5@ T’O _ 5 ) 5(2)@ + 0 5(1)¢5(1)<‘0 + 20 w(l)a 5(1)<p
i 1 1 oV 1 2 1
AT - Zs@56, — =@ 22 = (sM — 29, 6We,aks®
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- 1) _ 1)
2 (89) pr 5 (W) Gz 296 Ve
sOT = 9'sWe oW
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Second order Perturbations

» Einstein’s tensor at second order:

@¢0 _325® _ 5.5 0® 4 (3)26® 4 2 4@ _ 12(3)? (,®)?
106 =320 — 0,00+ (D) 6%+ T0® - 2(0) (w)

_3 @(u)z —8ypMaap® — 30,pMaiypM)

i a 1 P ; i i
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a
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Gravitational Waves from Inflation

» Tensor perturbations hj; represent gravitational waves, transverse, traceless fluctuations in the metric, and
encapsulate two physical degrees of freedom.

» To isolate these physical tensor modes from a generic rank-2 tensor, we apply the transverse-traceless (TT)
projection operator:

7™ =nind, —7r|Un’m n; = s;

ij

0,0
A

ensuring th;j =0 and hf =0.

» Applying this operator to the second-order Einstein equations projects out the tensor dynamics:

7. mc® = 7, ms?)

if ij

» The evolution equation for GWs in Fourier space becomes:
S S P

where H = a’/a is the conformal Hubble parameter, and the left-hand side describes wave propagation with
Hubble friction.

» The source term S, at second order arises from first-order scalar perturbations:

Sim = =200,V — 409,00 + ——0160M oW

M2

» These scalar sources include contributions from the gravitational potential w(l) and inflaton perturbations
5Lp(1), generating gravitational waves through anisotropic stress at second order.
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Gravitational Waves Sourced by Scalar Fluctuations

» From the time-space component of Einstein’s equations, we obtain:

=/ (1)
@ ¥
ﬁ(ip = 2M1231 (’lﬂ(l) + T)

y, ¥
= @5@:2/\//1:1 1/1()'5-7 s

=V 2e Mpl.

. V(s
where we used € = — 5 and H? = (—“g) ==
H 3m2,

» During inflation (¢ < 1), the dominant contribution to the source term becomes:
1
Sim =~ —Ml%l 910 Omdp

» Tensor perturbations are expanded as:

Z / (k) B e
3 lj k
arix ) (@m)

where k = k/|k|, and the polarization tensors satisfy:

ri i A N AN
k'e,-j‘:O, e/ =0, efe” V=4

i

» The equation of motion for each polarization mode becomes:
B+ oHR) + PR =48
where the source term is:

1 d* A
Y P
S = M2, / (27)3 & ()P 00y Oy
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Power Spectrum of Gravitational Waves

» The inflaton perturbation d¢ can be expanded in terms of creation and annihilation operators as:

Pk e
sotxm) = [ e 566(n)
= [ e vtk o0 + 07 e a1 ()]
» The power spectrum of tensor perturbations is defined via the two—point correlation function:
’
(B2 () B () = (2m)*6™ (ke + K )—m( n)-

» Solving the tensor perturbation equation yields:
A m A
w =4 [" dn almn) 200,
— o0
where gi(n; ") (in conformal time 7) is the Green's function satisfying:

g/ +2Heg, + Kgi = d(n — ).

» The Green's function explicit solution is given by

g(min’) = %nif [k(n —n")] ©(n —n"),
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Tensor Power Spectrum from Scalar Sources

» The power spectrum of tensor perturbations sourced at second order by scalar modes is given by:

(B () BY (m)) = 16 /_ " dm /_ " dn g ) g (5 12) (S (1) S (m2)).

» The two-point function of source terms is
1 daP d3PI Xepy 0 N piy o mo i
mg, | Gy Gy 5O PP em O PTp

X {8¢p(m)Sdk—p(m)S¢ys (12)0bus —pr (m2))-

(SO (m)SY (m)) =

» The source correlator is expressed as:
SN 272 K4
3 4
k3 4My,

oo [1+v] 42— (142 — 2217
X/ dv/ I il G
0 1—v| 4uv

x f(uk, vk, m)f" (uk, vk, n2) Psg(uk) Psg(vk),

(SO (m)SY (m2)) = (27)*8(k + K')

with u = |k — p|/k and v = p/k.
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» The power spectrum of the induced gravitational waves can be written as

4 . I+v aw? (12— 23 ]?
Pa(k,n) = MT/D dv/‘ du {¥ 1u, v,k m)|? P (uk) Psg(vk),
Pl

where

(o, v, k) = K / o g 7) T(uk, 7) T(vk, 7).

1—v|

4uv

» This expression captures the sourcing of second-order tensor modes hj; by first-order scalar perturbations

d¢, and is ultimately determined by the scalar power spectrum Psg (k).

» The following plot shows a numerical estimate of P,(k) assuming a scale-invariant scalar spectrum and
[1]? ~ 1 (for illustrative purposes):

Shaaban Khalil

Pr(k)

10-9
9x 107

8x 1079

7x107°t

6x 1079t

Induced Gravitational Wave Power Spectrum

Pulk)

10°4

02

102
k [Mpc™']

GWs from Inflation

10

10°

10t




Is a Small P,(k) Natural?

» A small tensor power spectrum Pp(k) ~ 10~% is natural in the standard setup of cosmology, provided that:

o The gravitational waves are sourced at second order from first-order scalar perturbations;

o The scalar power spectrum P54 (k) is close to the observed value ~ 107°;

@ There is no additional enhancement mechanism, such as resonance or sharp peaks in Ps4(k);

The background is a smooth, slow-roll inflationary expansion.

» In this case, the gravitational wave production is highly suppressed, and the result Pp(k) < 1 simply reflects
the weak sourcing of tensor modes by typical scalar perturbations in slow-roll inflation.

» There are scenarios where the amplitude of Px(k) can be significantly enhanced:

If the scalar power spectrum Psg (k) is amplified at small scales (e.g., in models with sharp features
or ultra-slow-roll inflation);

In scenarios where primordial black holes (PBHs) are produced, requiring enhanced scalar
fluctuations ? which in turn source observable GWs;

Through non-standard mechanisms like preheating, resonant amplification, or spectator fields;

If first-order tensor perturbations from inflation are large enough (i.e., large tensor-to-scalar ratio r),
they may be detectable by CMB B-mode experiments.
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Gravitational Wave Production

» The present-day energy density of gravitational waves is given by:
1 k\?—=———
Q ky\=—|—) P k
aw(k) = - (aH) (T, k),

where the overline denotes the time average.
» For induced gravitational waves sourced by scalar perturbations, we have:

& Q [UV3 oo (2 —1/3)(d? — 1/3)]°
Q k:g’/ dd/d—PkPk12 12,
aw(k) = == | s s P+ R~ (kx) Pr(ky) (I +15)

where ©, = 5.4 x 10~> and cg =0.4.

> Prlke) =~ 21 x 1079, athk. =
0.05Mpc~!. In scenarios with enhanced
small-scale perturbations (e.g., PBH forma-
tion), Pr can reach much larger values:
Pr(kpeax) ~ 1072 = 1071,

» The predicted GW spectra for these parame-
ter choices lie within the sensitivity ranges of
future GW detectors such as LISA, DECIGO,
BBO, SKA, and ET.

» The recently reported NANOGrav signal may e
be interpreted within this model, as shown by f(Hz)
the purple lines in the plot.
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Gravitational Waves During Reheating

» We consider a non-instantaneous reheating scenario in which the inflaton decays exclusively into right-handed
neutrinos (RHNs).

» The subsequent decay of RHNs into Standard Model particles not only reheats the Universe but also generates
the observed baryon asymmetry via leptogenesis.

» During this phase, gravitational waves (GWs) are produced through two primary channels: bremsstrahlung
radiation during inflaton decay and inflaton scattering processes.

» GW production from bremsstrahlung becomes dominant toward the end of reheating, whereas scattering-
induced GWs are more prominent around the maximum temperature of the Universe.

» The resulting GW spectrum from both processes lies within the sensitivity range of proposed resonant cavity
experiments.
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Inflaton Graviton Interactions During Reheating

» The interaction between the inflaton field ¢ and gravity is described by the action:
M3 1
= 4 =P gy _
5—/dxx/|g\ { 5y R+ 587050000 = V(e)|,

where V/(¢) denotes the inflaton potential.

» In the weak-field limit, the metric is expanded as:
Buv = Nuv + :“Chuua
g = Y — khM 4 thuahal/7
2
K K® 5
JVigl=1+ Sh+ g(h —2hih3),
with k = V2/Mp.

» The leading inflatongraviton interaction term is:

Lint D —K hyy Tgu1

where the inflaton energy-momentum tensor is:
v v v 1
T = 0"00"6 - ¢ (00~ V(0)|

» During reheating, the inflaton oscillates around a generic potential:

V(¢) = AM} (Mi;)n
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Gravitational Waves from Inflaton Decay

» Gravitational waves (GWs) can be sourced during reheating via the decay of the inflaton field ¢ into matter
fields, accompanied by graviton emission.

» We consider generic interactions of the inflaton with a complex scalar x, Dirac fermion ¢, and massive

vector boson V,:
Ling D —polx® — yudvod — gy V V* .

» After inflation ends, the inflaton oscillates around the minimum of its potential and decays into particlese.g.,
heavy right-handed neutrinos (RHNs)with possible graviton emission:

¢ — NN, ¢ — hNN.

» The emitted gravitons contribute to a stochastic gravitational wave background, encoding information about
inflaton interactions and reheating dynamics.

N N N h N
o Canlprkn il
N N N N
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Inflaton Decay into RHNs and GW Emission

» The tree-level decay rate of the inflaton into RHNs is:

3/2
r(o)iM(y¢)2 174m%,
= (22 A ,
8 \ V2 M

where M is the inflaton mass, my is the RHN mass, and y4 is the Yukawa coupling.

» The differential rate for graviton emission in the 3-body decay ¢ — h NN is:

o vi B (e YT 2B
dE, — 32m3ME M2 (M — Ep)? M)

valid for 0 < E < M/2 — my.

» The energy densities evolve as:

po +3Hpy = —(T +TW)p,,

R (0) dr® /m— Ep
pn+3Hpn =T pg + / 4E, i py dEy — Tnpn,
PR+ 4Hpr = Tnpn,

) ar® /g,

pew + 4Hpew = / dE, \m ) P? dEn,

. PytPNTPRTP
with H = PerPNIPR PGW
3MP
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One can write the last Boltzmann equation as:

da aH pr

w

d(pew/pr) _ 1 po ar® Ew g _ Paw ()
dE, M PR

This expression can be integrated during reheating, i.e., amax < a < a, corresponding to photon temper-
ature Toax > T > T

During reheating ps(a) = pg(arm) (%’)3 and T, corresponds to pr( T, h) = pe(Twm).

Assuming that at the beginning of the reheating, no SM radiation or GWs and at the end of the reheating
r® ~ H(T,). Thus, one finds for y — 0 that

pew(Tw) 1 M [ y Ton )3/3]
pr(Tm) — 96 m2Mp .

Tmax

The primordial GW spectrum at present Qg (f) for a frequency f is defined by

Qew(F) = 1 doaw _ o0 d(pew/pr) Q© &+«(Trm) [g*s(TO) }4/3 d(pew(Tm)/pr(Twm)
v pedinf 7 dinf T gu(To) Lews(Tm) dinE,

Tin M f
5.5 x 1015GeV Mp 1012Hz

= Qew(f) ~1.4 x 1078
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GW Production During Reheating

» Gravitational waves can also be produced from inflaton self-scattering during reheating.
» A quartic interaction hh¢¢ arises at second order, with coupling K2, leading to ¢¢ — hh processes.

» These processes are dominant at the onset of reheating and are proportional to the square of the inflaton
energy density.

» They depend only on gravitational couplings and not on inflaton decay channels.
» All four contributing Feynman diagrams enter the matrix element M(¢¢ — hy hyy) at O(kz).

» The GW production rate:

2
P¢ Epol |M|
I'h = Tah_ 2 -
mg 327TI11¢
@, p1 hpv k1 ¢, p1 hpw,
&1 Byuw by .01 hy foy N N
————— NI T A AN
1 N N
b1 .
@ : e L 7 hap -
o o , i
&, p2 hap k2 P1P2 hap ko g, po hayke  $p2 hagk2
(a) (b) (c) (d)
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GW Spectrum from Inflaton Condensate

» The Boltzmann equations governing GW production from inflaton scattering are
pPew +4Hpew = Thpg,
b +3Hpy = =T4pg,

PR +4Hpr =Typg.
» Solving yields:

\[a4/3m p1/6 T16/3

3 )
167 M3
2
with penq: inflaton energy density at a = aeng, and o = %.

pPew =

» The GW energy density today is: Qewh?® = (djﬁl/fV) /(pe,oh™?), and GW frequency today from scale
factor a: 27f = mgy(a/ao).

£
2 1
& 10726 m B
— M;=10'1Gev A
AN
10-33[| — M;=10'Gev N
! |
— M;=10°GeV i
10740 ' |
104 108 1012 1016

f (Hz)
» Example spectrum from inflaton annihilation for my = 3 X 10" GeV and pend = (5.5 X 10" GeV)A.
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Conclusion and Outlook

» Gravitational wave (GW) production provides a powerful probe of inflationary dynamics and the early Uni-
verse.

» We discussed two primary mechanisms for GW production:

o Inflationary Fluctuations: Quantum fluctuations during inflation generate a background of GWs,
which encode the properties of the inflationary phase.
o Reheating Processes: After inflation, GW production occurs via:

@ Graviton Bremsstrahlung during inflaton decay, sensitive to couplings with matter fields.
o Inflaton scattering/annihilation, purely gravitational, independent of decay channels.

» Both mechanisms contribute to a high-frequency stochastic GW background, potentially detectable by future
observatories.

» The GW spectra carry valuable information on:

o The properties of inflation (potential, scale, and dynamics)
o Reheating temperature and the inflaton mass
o Couplings to other fields

» Current detectors are not sensitive to the high-frequency GWs from these processes, but upcoming advance-
ments may allow detection.

» Outlook: Gravitational wave cosmology offers a complementary and novel probe of the early Universe,
shedding light on inflation, reheating, and physics beyond the Standard Model.
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