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CFTP - Departamento de F́ısica, Instituto Superior Técnico - Lisboa, Portugal
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The complementarity between the quark and lepton mixing matrices is shown to provide

robust predictions. We obtain these predictions by first showing that the matrix VM ,
product of the quark (CKM) and lepton (PMNS) mixing matrices, may have a zero (1,3)
entry which is favored by experimental data.

We obtain that any theoretical model with a vanishing (1,3) entry of VM that is

in agreement with quark data, solar, and atmospheric mixing angle leads to θPMNS
13

=
(9+1

−2
)◦. This value is consistent with the present 90% CL experimental upper limit. We

also investigate the prediction on the lepton phases. We show that the actual evidence,

under the only assumption that the correlation matrix VM product of CKM and PMNS

has a zero in the entry (1, 3), gives us a prediction for the three CP-violating invariants
J , S1, and S2. A better determination of the lepton mixing angles will give stronger
prediction for the CP-violating invariants in the lepton sector. These will be tested in

the next generation experiments. Finally we compute the effect of non diagonal neutrino
mass in li → ljγ in SUSY theories with non trivial Quark-Lepton complementarity and a
flavor symmetry. The Quark-Lepton complementarity and the flavor symmetry strongly

constrain the theory and we obtain a clear prediction for the contribution to µ → eγ and
the τ decays τ → eγ and τ → µγ. If the Dirac neutrino Yukawa couplings are degenerate
but the low energy neutrino masses are not degenerate, then the lepton decays are
related among them by the VM entries. On the other hand, if the Dirac neutrino Yukawa

couplings are hierarchical or the low energy neutrino masses are degenerate, then the
prediction for the lepton decays comes from the CKM hierarchy.
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1. Introduction

The actual experimental situation is such that we are very close to obtain a theory

of flavor that is able to explain in a easy way all the Standard Model masses and

mixing1−15. The last but not least experimental ingredient have been the neutrino

data. In fact, after the recent experimental evidences about neutrino physics we

know very well almost all the parameters in the quark and lepton sectors. We

measured all the quark and charged lepton masses, and the value of the difference

between the square of the neutrino masses ∆m2
12 = m2

1 − m2
2 and |∆m2

23| = |m2
3 −

m2
2|. We also know the value of the quark mixing angles and phases, and the two

mixing angles θ12 and θ23 in the lepton sector. The challenger for the next future
16−18 will be to determine the sign of δm2

23 (i.e. the hierarchy in the neutrino sector),

the absolute scale of the neutrino masses, and the value of the 3rd lepton mixing

angle θ13 (in particular if is it zero or not). Finally, if θ13 is not too small, there is

a hope to measure the CP violating phases.

From all these results we are able to extract strong constraints on the flavor

structure of the SM. In particular the neutrino data were determinant to clarify

the role of the discrete symmetry in flavor physics. The neutrino experiments con-

firm 19−27 that the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) 28,29 lepton mixing

matrix UPMNS contains large mixing angles. For example the atmospheric mixing

θPMNS
23 is compatible with 45◦ and the solar mixing θPMNS

12 is ≈ 34◦ 30−42. These

results should be compared with the third lepton mixing angle θPMNS
13 which is

very small and even compatible with zero 43,44, and with the quark mixing angles

in the CKM matrix 45,46. The disparity that nature indicates between quark and

lepton mixing angles has been viewed in terms of a ’Quark-Lepton complementarity’

(QLC) 47−51 which can be expressed in the relations

θPMNS
12 + θCKM

12 ≃ 45◦ ; θPMNS
23 + θCKM

23 ≃ 45◦ . (1)

Possible consequences of QLC have been investigated in the literature and in par-

ticular a simple correspondence between the UPMNS and UCKM matrices has been

proposed 52−55 and analyzed in terms of a correlation matrix 56−64. The relations in

eq. (1) are related to the parametrization used for the CKM and PMNS mixing ma-

trix. From a more general point of view, we can define a correlation matrix VM as the

product of the PMNS and CKM mixing matrices, VM = UCKM UPMNS . A lot of ef-

forts have been done to obtain the most favorite pattern for the matrix VM
47,53−59.

The naive QLC relations in eq. (1) seems to implies VM to be Bi-Maximal, i.e. in

the standard parametrization it contains two maximal mixing angle, and a third

angle to be zero. Despite the naive relations between the PMNS and CKM an-

gles, a detailed analysis shows that the correlation matrix VM = UCKMUPMNS is

phenomenologically compatible with a TriBi-Maximal pattern, and only marginally

with a Bi-Maximal pattern. From actual experimental evidences a non trivial Quark-

Lepton complementarity arises 58, i.e. we learn that VM Bi-Maximal, although it is

not ruled out by the experiments, is excluded at 90% CL in non SUSY models, or

in SUSY models with tanβ < 40 where the RGE correction are negligible 65−69,
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and a non trivial Quark-Lepton complementarity arises 58. Future experiments on

neutrino physics, and in particolar in the determination of θ23 and the CP violating

parameter J , will be able to better clarify if a trivial Quark-Lepton complemen-

tarity, i.e. VM Bi-Maximal, is ruled out in favor of a non trivial Quark-Lepton

complementarity, i.e. VM TriBi-Maximal or even more structured 5. Unitarity then

implies UPMNS = U†
CKMVM and one may ask where do the large lepton mixings

come from? Is this information implicit in the form of the VM matrix? This question

has been widely investigated in the literature, but its answer is still open. However

the fact VM has a clear non trivial structure and the strong indication of gauge cou-

pling unification allow us to obtain in a straightforward way constraints on the high

energy spectrum too. Within this framework we get some informations about flavor

physics from the correlation matrix VM itself. It is very impressive that for some

discrete flavor symmetries such as A4 dynamically broken into Z3, as in Refs. 6 and

10, or S3 softly broken into S2, as in Ref. 4, the TriBi-Maximal structure appears in

a natural way. In fact in some Grand Unification Theories (GUTs) the direct QLC

correlation between the CKM and the PMNS mixing matrix can be obtained. In

this class of models, the VM matrix is determined by the heavy Majorana neutrino

mass matrix 47,54. Moreover as long as quarks and leptons are inserted in the same

representation of the underlying gauge group, we need to include in our definition of

VM arbitrary but non trivial phases between the quark and lepton matrices. Hence

we will generalize the relation VM = UCKM · UPMNS to

VM = UCKM · Ω · UPMNS (2)

where the quantity Ω is a diagonal matrix Ω = diag(eiωi) and the three phases ωi are

free parameters (in the sense that they are not restricted by present experimental

evidence).

In this paper we will show how the investigation of the correlation matrix VM

based on eq. (2) implies that there is a zero texture of VM , namely VM13
= 0. The

conclusion for matrix VM is that the correlation between the matrices UCKM and

UPMNS is rather nontrivial. Then, by using this fact we will report the predictions

that can be obtained from experimental data and QLC for θPMNS
13 , CP violating

parameters in the lepton sector and the lepton number violating decays. The plan of

the work is the following. In section 2 we study the numerical ranges of VM entries

with the aid of a Monte Carlo simulation and we will show that the vanishing of the

(1, 3) entry is favored by the data analysis. After that we present the matter from

a different point of view: we start from a zero (1, 3) VM entry (e.g. a Bi-Maximal or

TriBi-Maximal matrix) and we derive the consequent predictions. In section 3 we

get a small value for θPMNS
13 with a sharp prediction

θPMNS
13 = (9±1

2)
◦ , (3)

for the UPMNS lepton mixing angle through

UPMNS = (UCKM · Ω)−1 · VM (4)
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In sec. 4, with the aid of the Monte Carlo simulation, we study the numerical

correlations of the lepton CP violating phases J , S1, and S2 with respect to the

mixing angle θPMNS
12 . In Sec. 5 we compute the value of the contribution to the li →

ljγ processes from a non diagonal Dirac neutrino Yukawa coupling. By using the non

trivial Quark-Lepton complementarity and the see-saw mechanism we will compute

the explicit spectrum of the heavy neutrino. This will allow us to investigate the

relevance of the form of VM in the li → ljγ.

2. Which VM does the phenomenology imply?

In this section we investigate the value of the VM matrix entries concentrating

in particular in the (1,3) entry and the important mixing angle θVM

13 to which it

is directly related. We then explicitly study the allowed values of the VM angles,

finally concluding that sin2 θVM

13 = 0 is the value most favored by the data. We will

be using the Wolfenstein parameterization 70 of the UCKM matrix in its unitary

form 71 where one has the relation

sin θCKM
12 = λ sin θCKM

23 = Aλ2 sin θCKM
13 e−iδCKM

= Aλ3(ρ − iη) (5)

to all orders in λ. The lepton mixing matrix UPMNS is parameterized as

UPMNS = U23 · Φ · U13 · Φ† · U12 · Φm. (6)

Here Φ and Φm are diagonal matrices containing the Dirac and Majorana CP vio-

lating phases, respectively Φ = diag(1, 1, eiφ) and Φm = diag(eiφ1 , eiφ2 , 1), so that

UPMNS =





ei φ1c12 c13 ei φ2c13 s12 s13e
−i φ

ei φ1

(

−c23 s12 − ei φ c12 s13 s23

)

ei φ2

(

c12 c23 − ei φ s12 s13 s23

)

c13 s23

ei φ1

(

−ei φ c12 c23 s13 + s12 s23

)

ei φ2

(

−ei φ c23 s12 s13 − c12 s23

)

c13 c23





The investigation we perform for the VM matrix starts from the fundamental equa-

tion VM = UCKM ·Ω ·UPMNS and uses the experimental ranges and constraints on

lepton mixing angles. We resort to a Monte Carlo simulation with two-sided Gaus-

sian distributions around the mean values of the observables. We use the updated

values for the CKM and PMNS mixing matrix, given at 95%CL by 72

λ = 0.2265+0.0040
−0.0041 , A = 0.801+0.066

−0.041 ,

η = 0.189+0.182
−0.114 , ρ = 0.358+0.086

−0.085 ,

(7)

with ρ + iη =

√
1 − A2λ4(ρ + iη)√

1 − λ2 [1 − A2λ4(ρ + iη)]
; (8)

and a 30−42

sin2 θPMNS
23 = 0.44 ×

(

1+0.41
−0.22

)

, sin2 θPMNS
12 = 0.314 ×

(

1+0.18
−0.15

)

,

sin2 θPMNS
13 =

(

0.9+2.3
−0.9

)

× 10−2 .

(9)

aThe lower uncertainty for sin2 θ13 is purely formal, and correspond to the positivity constraint
sin2 θ13 ≥ 0.
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With the aid of a Monte Carlo program we generated the values for each vari-

able: for the sine square of the lepton mixing angles and for the quark parameters

A, λ, ρ̄, η̄ we took two sided Gaussian distributions with central values and stan-

dard deviations taken from eqs. (7-9). For the unknown phases we took flat random

distributions in the interval [0, 2π]. We divided each variable range into short bins

and counted the number of occurrences in each bin for all the variables, having run

the program 106 times. In this way the corresponding histogram is smooth and the

number of occurrences in each bin is identified with the probability density at that

particular value. A comparatively high value of this probability density extending

over a wide range in the variable domain means a high probability for the variable

to lie in this range, therefore that such range is ’favored’ by the data being used as

Monte Carlo input. Conversely higher probability implies better compatibility with

experimental data, while lower probability means poor or no compatibility with

data.
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Fig. 1. The distribution, normalized to one at the maximum, of sin2 θ
VM
13

obtained from the
definition of the correlation mixing matrix VM given in eq. (2) by using a Monte Carlo simulation
of all the experimental data. We also plot the 1σ and the 2σ lines.

The range of tan2 θVM

23 which is compatible with experiments at 90%CL is the

interval [0.35, 1.4], so that tan2 θVM

23 = 1.0 is consistent with data. For tan2 θVM

12 we

obtain a range between 0.25 and 1.1 at 90%CL and so tan2 θVM

12 = 1.0 (which corre-

sponds to a Bi-Maximal matrix) only within 3σ. Moreover the value tan2 θVM

12 = 0.5

(which corresponds to a TriBi-Maximal matrix), is well inside the allowed range. We

checked that for tan2 θVM

12 = 0.3, and 0.5 the resulting distribution for tan2 θPMNS
12

is compatible with the experimental data. Instead maximal θVM

12 and θVM

23 taken

together are disfavored, as the solar angle is hardly compatible with the corre-

sponding allowed interval. We also checked that the distribution of tan2 θPMNS
23 for

tan2 θVM

23 ∈ {0.5, 1.0, 1.4} with tan2 θVM

12 = 0.5 are compatible with the experimental
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data.

In fig.1 we plot the distribution for sin2 θVM

13 . We see that sin2 θVM

13 = 0 is not

only allowed by the experimental data, but also it is the preferred value. In the next

section we will see that this has important consequences in the model building of

flavor physics.

3. Prediction for θP MNS
13

In this section we investigate the consequences of a VM correlation matrix with

zero (1,3) entry on the still experimentally undetermined θPMNS
13 mixing angle. In

particular we will see that the θPMNS
13 prediction arising from eq. (2) or, equivalently,

UPMNS = (UCKM · Ω)−1 · VM (10)

is quite stable against variations in the form of VM allowed by the data.

As previously shown (see section 2), the data favors a vanishing (1,3) entry in

VM . So in the whole following analysis we fix sin2 θVM

13 = 0. We allow the UCKM

parameters to vary, with a two-sided Gaussian distribution, within the experimental

ranges given in eq. (7), while for the Ω phases in eq. (10) we take flat distributions

in the interval [0, 2π]. We make Monte Carlo simulations for different values of θVM

12

and θVM

23 mixing angles, allowing tan2 θVM

12 and tan2 θVM

23 to vary respectively within

the intervals [0.3, 1.0] and [0.5, 1.4] in consistency with the lepton and quark mixing

angles (see section 2).

From eq. (10), the parameterization of the CKM mixing matrix in eq. (5) and

the definition of the phase matrix Ω we get

(UPMNS)13 = e−iω1

[

(

1 − λ2

2

)

sin θVM

13 e−iφVM − λ sin θVM

23 cos θVM

13

+Aλ3(−ρ + i η + 1) cos θVM

23 cos θVM

13 + O(λ4)
]

, (11)

so that

sin2 θPMNS
13 = sin2 θVM

23 λ2 + O(λ3) , (12)

where we have used the fact that sin2 θVM

13 = 0 and A ≈ O(1). We see that

sin2 θPMNS
13 does not depend on tan2 θVM

12 . For this reason the parameter sin2 θPMNS
13

needs to be studied as a function of tan2 θVM

23 only. Fixing for definiteness tan2 θVM

12 =

0.5 and taking the three different values tan2 θVM

23 ∈ {0.5, 1.0, 1.4}, we computed the

corresponding distributions of sin2 θPMNS
13 . We note that these values of tan2 θVM

23

practically cover the whole range consistent with the data. It is seen that the

sin2 θPMNS
13 distributions are quite sharply peaked around maxima of 7.3◦, 8.9◦

and 9.8◦. Recalling that the shift of this maximum is effectively determined by the

parameter tan2 θVM

23 which was chosen to span most of its physically allowed range,

it is clear that we have a stable prediction for θPMNS
13 .

In order to better clarify this stability, we show in fig. 2 the mean and the

standard deviation of sin2 θPMNS
13 obtained with our Monte Carlo simulation for
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Fig. 2. The allowed values for sin2 θPMNS
13

as a function of tan2 θ
VM
23

under the assumption that

sin2 θ
VM
13

= 0. We report the central and 3σ values, and the approximate analytical dependence
given in eq. (12). We also plot the experimental central value, the 1σ, the 2σ, and the 3σ. We fixed

tan2 θ
VM
12

= 0.5 for definiteness.

the three chosen values of tan2 θVM

23 . In addition we plot the analytic dependence

of sin2 θPMNS
13 given by eq. (12) with the central value of λ, the best fit point of

sin2 θPMNS
13 and its 1σ, 2σ and 3σ from standard analysis. Our prediction for θPMNS

13

then follows from the experimental data on λ ,A, ρ, η, tan2 θPMNS
12 and tan2 θPMNS

23

and the values of tan2 θVM

12 , tan2 θVM

23 are taken in the intervals [0.3, 1.0], [0.5, 1.4]

respectively, as allowed by the data. For a vanishing (1, 3) entry of the matrix VM

we finally find θPMNS
13 in the interval [7◦, 10◦].

To conclude this section we note that another prediction for a small θPMNS
13 has

recently been derived 63

θPMNS
13 = 9◦ + O(sin3θCKM

12 ). (13)

This follows from an assumed Bi-maximality of a matrix relating Dirac to Majorana

neutrino states together with the assumption that neutrino mixing is described

by the CKM matrix at the grand unification scale. Our approach on the other

hand is free from any ad hoc assumptions. We show that it is a zero texture of

the VM correlation matrix, namely VM13
= 0, together with all the experimental

values of the quark and lepton mixing angles, that predicts θPMNS
13 = (9±1

2)
◦. More

importantly, in sec. 2 we show that the vanishing of this entry is favored by the

data. Condition VM13
= 0 is compatible with VM being Bi-Maximal (i.e. with two

angles of 45◦ and a vanishing one), TriBi-Maximal (i.e. with one angle of 45◦, one

with tan2 θ = 0.5 and a third vanishing one) or of any other form. Furthermore

we make use of a phase matrix Ω, see eq. (2), that takes account of the mismatch

between the quark and lepton phases and consider Majorana phases in the UPMNS

matrix with a flat random distribution.
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4. CP violating invariants in the lepton sector

In this section we investigate the consequences of a VM correlation matrix with a

zero (1, 3) entry on the undetermined CP violating parameters in the lepton sector.

There are two kind of invariants parameterizing CP violating effect. The Jarlskog

invariant J that parametrizes the effects related to the Dirac phase, and the two

invariants S1 and S2 that parametrize the effects related to the Majorana phases.

The J invariant describes all CP breaking observables in neutrino oscillations. It is

the equivalent of the Jarlskog invariant in the quark sector. It is given by

J = Im{Uνeν1
Uνµν2

U∗
νeν2

U∗
νµν1

} . (14)

In the parametrization of eq. (7) one has

J =
1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sinφ . (15)

Then we have the two invariants S1 and S2 that are related to the Majorana phases.

They are

S1 = Im{Uνeν1
U∗

νeν3
} (16)

S2 = Im{Uνeν2
U∗

νeν3
}

In the parametrization of eq. (7) we have

S1 =
1

2
cos θ12 sin 2θ13 sin(φ + φ1) (17)

S2 =
1

2
sin θ12 sin 2θ13 sin(φ + φ2)

The two Majorana phases appear in S1 and S2 but not in J .

As show in sec. 2, the data favors a vanishing (1, 3) entry in the correlation

matrix VM
58. So in the whole analysis we fix sin2 θVM

13 = 0. Moreover tan2 θVM

12 and

tan2 θVM

23 are allowed to vary respectively within the intervals [0.3, 1.0] and [0.5, 1.4].

We allow the UCKM parameters to vary, with a two-sided Gaussian distribution,

within the experimental ranges given in eq. (7). For the Ω phases in eq. (2) we

take flat distributions in the interval [0, 2π]. We make Monte Carlo simulations for

different values of θVM

12 and θVM

23 mixing angles, allowing tan2 θVM

12 and tan2 θVM

23 to

vary respectively within their allowed intervals, in consistency with the lepton and

quark mixing angles. From eq. (15), by using the fact that θ13 is small and that θ23

is maximal, we get

J ≈ 1

8
sin 2θ12 sin 2θ13 sin φ

This expression tells us that the J parameter is within the range |J | < 0.042.

However there is a non trivial correlation between J and θPMNS
12 . Because the

CKM is given by the experimental data, and (VM )13 is fixed to be zero, the phase

φ and the θPMNS
13 angle are almost fixed as a function of θPMNS

12 .

In figs. 3-5 we report the result of our simulation for J . We plot the correlation

between the J invariant and sin2 θPMNS
12 for VM Bi-Maximal (fig. 3), TriBi-Maximal
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Fig. 3. The correlation between the Dirac CP violating parameter J and sin2 θPMNS
12

for VM

Bi-Maximal. We also plot the experimental central value, the 1σ, and the 2σ for sin2 θPMNS
12

.
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Fig. 4. The correlation between the Dirac CP violating parameter J and sin2 θPMNS
12

for VM

TriBi-Maximal.
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Fig. 5. The correlation between the Dirac CP violating parameter J and sin2 θPMNS
12

for VM

such that tan2 θ
VM
12

= 0.4.

(fig. 4), and VM with tan2 θVM

12 = 0.4 (fig. 5). First of all, from fig. 3, we see that

the solar mixing angle θPMNS
12 is constrained to have sin2 θPMNS

12 > 0.36 for VM

Bi-Maximal. From figs. 3-5 we see the correlation between the structure of VM and

the CP violating invariant J . In particular, for VM Bi-Maximal J is close to zero.

For VM TriBi-Maximal |J | is around its maximum value 0.042. Finally for VM such

that tan2 θVM

12 = 0.4 we get that J can be any value between −0.04 and 0.04. We also

see that a better determination of the sin2 θPMNS
12 could give a stronger prediction

for the J invariant in the case of VM TriBi-maximal.

Similar results hold for S1 and S2 (the plots have similar shapes). The expressions

in eqs. (17) give us the range for these invariants:

|S1| < 0.14 |S2| < 0.11 (18)

We obtain that for VM Bi-Maximal the Majorana CP invariant S1 is close to zero,
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for VM TriBi-Maximal S1 is around 0.13. Finally for VM such that tan2 θVM

12 = 0.4 we

obtain that S1 can be any value between −0.14 and 0.14. We see that also in this case

a better determination of the θPMNS
12 mixing angle will give a stronger constraint

for the S1 and S2 invariant for VM TriBi-Maximal. As for J , these correlations of S1

and S2 with respect to θPMNS
12 are predictions of any theoretical model that gives

a relation of the type VM = UCKM ΩUPMNS with (VM )13 = 0. In the next section

we will show how to construct an explicit model that predict (VM )13 = 0.

5. li → ljγ

In this section we compute the effect of non diagonal neutrino mass on li → ljγ

in SUSY theories with non trivial Quark-Lepton complementarity an a flavor sym-

metry. The correlation matrix VM = UCKMUPMNS is such that its (1, 3) entry, as

preferred by the actual experimental data, is zero. We obtain a clear prediction for

the contribution to li → ljγ. There are three cases. They depend on the spectrum

of the Dirac neutrino mass matrix and the low energy neutrino. We may have: 1)

hierarchical Dirac neutrino eigenvalues (in this case we have very hierarchical right-

handed neutrino masses); 2) degenerate Dirac neutrino eigenvalues, with non de-

generate low energy neutrino masses (in this case the hierarchy of the right-handed

neutrino masses is close to the one of the low energy spectrum); 3) degenerate Dirac

neutrino eigenvalues and low energy neutrino spectrum (that implies right-handed

neutrino close to be degenerate). For each of these cases we have different contri-

butions to li → ljγ. We will show that only when Dirac neutrino eigenvalues are

degenerate and low energy neutrino masses are not degenerate, then the explicit

form of VM plays an important role.

The contribution at first order approximation to the process li → ljγ in SUSY

models is given by

BR(li → ljγ) ∝ Γ(li → eνν)

Γ(li)

α3

Gfm8
sv

4
u

tan2 β

(

3m0 + A0

8π2

)2 ∣

∣

∣

∣

(

M̃DLM̃†
D

)

ij

∣

∣

∣

∣

2

where m0 is the universal scalar mass, A0 is the universal trilinear coupling param-

eter, tan β is the ratio of the vacuum expectation values of the up and down Higgs

doublets, and ms is a typical mass of superparticles with 73 m8
s ≈ 0.5m2

0M
2
1/2(m

2
0 +

0.6M2
1/2)

2, where M1/2 is the gaugino mass. The matrix Lij = 1ij log Mx/Mi takes

into account the RGE effects on the Majorana right-handed neutrino masses. In

fact the eq. (19) is computed in the base where the Yukawa of the charged lepton

and the Majorana neutrino mass are diagonal. Eq. (19) is valid in the base where

right-handed Majorana neutrino mass matrix, charged lepton mass matrix and weak

gauge interactions are diagonal. The experimental limit for the branching ratio of

µ → eγ is 1.2 × 10−11 at 90% of confidence level 74 and it could go down to 10−14

as proposed by MEG collaboration.

In supergravity theories if the effective Lagrangian is defined at a scale higher

than the Grand Unification scale, then the matter fields have to respect the un-
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derlying gauge and flavor symmetry. Hence, we expect quark-lepton correlations

among entries of the sfermion mass matrices. In other words, the quark-lepton uni-

fication seeps also into the SUSY breaking soft sector 75. In general we do not get

strongly renormalization effects on flavor violating quantities from the heavy neu-

trino scale to the electroweak scale because the absence of flavor violation. In fact

the remaining flavor violation related to the low energy neutrino sector gives neg-

ligible contribution with the exception of the case with high degenerated neutrino

and tan β > 40 69,65.

Let be MR the Majorana mass matrix for the right neutrino and MD the Dirac

mass matrix. Under the assumption that the low energy neutrino masses are given

by the see-saw of Type I we have that the light neutrino mass matrix is given by

Mν = MD
1

MR
MT

D . (19)

The lepton mixing matrix is

UPMNS = U†
l Uν = U†

l U0VM . (20)

where Ul, Uν and U0 diagonalize on the left respectively the charged lepton, Mν

and MD. The mixing matrix VM is here defined to verify the equality Uν ≡ U0VM

and is such that

VMM∆
ν V T

M ≡ C = M∆
D V †

0

1

MR
V ⋆

0 M∆
D , (21)

In the quark sector we introduce Yu and Yd to be the Yukawa matrices for up and

down sectors. They can be diagonalized by

Yu = UuY ∆
u V †

u and Yd = UdY
∆
d V †

d , (22)

where the Y ∆ are diagonal and the Us and V s are unitary matrices. Then the quark

mixing matrix is given by

UCKM = U†
uUd . (23)

Notice that if there is a flavor symmetry that constrains the Yukawa couplings in

such a way that the diagonalizing unitary matrices are fixed then the entries of Yl

can still be very different from the entries of Y T
d . However both Yukawa matrices are

diagonalized by the same mixing matrices. This is exactly the case in the presence of

an A4 discrete flavor symmetry dinamically broken into Z3
6,10 and can be partially

true in the case of S3 softly broken into S2
4. In this case we have

Yl ≈ Y T
d → Ul ≃ V ⋆

d .

In the same way, if we call Yν the Yukawa coupling that will generate the Dirac

neutrino mass matrix MD, we have also the relation

Yν ≈ Y T
u → U0 ≃ V ⋆

u . (24)

This relation, together with the previous one, implies

UPMNS ≃ V T
d V ⋆

u VM .
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If the Yukawa matrices are diagonalized by similar matrix on the left and on the

right, for example in minimal renormalizable SO(10) with only small contributions

from the antisymmetric representations such as 120 or more important in models

where the diagonalization is strongly constrained by the flavor symmetry, the pre-

vious relationship translates into a relation between UPMNS , UCKM and VM . In

fact we have

Yu ≃ Y T
u → V ⋆

u = Uu and Yd ≃ Y T
d → V ⋆

d = Ud .

Finally we get that VM satisfies eq. (2). The form of VM can be obtained under

some assumptions about the flavor structure of the theory. Some flavor models give

for example a correlation VM with (VM )13 = 0. As a consequence of the from of

the non trivial Quark-Lepton complementarity there are some predictions for the

model. For example the prediction for θPMNS
13 of sec. 3 58 and the correlations

between CP violating phases and the mixing angle θ12 of sec. 4 5.

5.1. M̃D in non trivial Quark-Lepton complementarity

Let us investigate the value of Dirac neutrino mass matrix M̃D in the base where

right-handed Majorana neutrino mass matrix, charged leptons mass matrix and

weak gauge interactions are diagonal. We define the unitary matrix VR by the

diagonalization of MR

VRM∆
R V T

R = MR . (25)

and we obtain

M̃D = U†
l MDV ⋆

R . (26)

We want now to related this M̃D matrix to the CKM mixing matrix by using the

previous result. First of all we rewrite this matrix as

M̃D = U†
l MDV ⋆

R

= U†
l U0M

∆
D V †

0 V ⋆
R . (27)

Then we notice that the matrix V †
0 V ⋆

R is related via the C matrix to the diagonal

low energy neutrino mass matrix m∆
low and to VM . In fact we have

VMm∆
lowV T

M = C

= M∆
D V †

0

1

MR
V ⋆

0 M∆
D

= M∆
D V †

0 V ⋆
R

1

M∆
R

V T
R V ⋆

0 M∆
D (28)

where we used the inverse of eq. (25)

V ⋆
R

1

M∆
R

V †
R =

1

MR
. (29)
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We multiple on the left and on the right both sides of eq. (28) by 1/M∆
D and we get

V †
0 V ⋆

R

1

M∆
R

V T
R V ⋆

0 =
1

M∆
D

VMm∆
lowV T

M

1

M∆
D

. (30)

Once we computed the V †
0 V ⋆

R matrix form eq. (30), by using eq. (27), we get

M̃D = U†
l U0M

∆
D V †

0 V ⋆
R

= UPMNSV †
MM∆

D V †
0 V ⋆

R

= Ω†U†
CKMM∆

D V †
0 V ⋆

R , (31)

where in the last line we used the relations in eq. (20) and (2).

5.2. Fully determination of V
†
0

V ⋆
R and M∆

R

Eq. (31) is the equivalent of the general formula 76 in presence of non trivial Quark-

Lepton complementarity. We observe that the main modification is the presence

of U†
CKM instead of UPMNS thanks to the fact the these matrices are related each

other through VM as shown in the relation of eq. (2). Let us now compute the V †
0 V ⋆

R

matrix in a general scenario.

In the following we use the experimental constraint from 58 that says us that (VM )13
is zero and the allowed ranges for θVM

12 and θVM

23 are 58

tan2 θVM

12 ∈ [0.3, 1.0] and tan2 θVM

23 ∈ [0.5, 1.4] . (32)

Let us denote with mi the complex low energy neutrino masses obtained after the

see-saw (m∆
low = {m1,m2,m3}), and with Mi the eigenvalues of the Dirac neutrino

mass matrix MD (M∆
D = {M1,M2,M3}). We get

V †
0 V ⋆

R

1

M∆
R

V †
RV ⋆

0 =









(m1c2

12
+m2s2

12
)

M2

1

−(m1−m2)c12c23s12

M1M2

(m1−m2)c12s12s23

M1M3

(m2−m1)c12c23s12

M1M2

(m1s2

12
c2

23
+m2c2

12
c2

23
+m3s2

23
)

M2

2

s23c23(m3−m2c2

12
−m1s2

12
)

M2M3

(m1−m2)c12s12s23

M1M3

s23c23(m3−m2c2

12
−m1s2

12
)

M2M3

s2

23
(m1s2

12
+m2c2

12
)+m3c2

23

M2

3









.

(33)

Eq. (33) is general and must be specified depending on the explicit form of VM . We

have three cases 64:

(1) hierarchical Dirac neutrino eigenvalues (very hierarchical right-handed neutrino

masses, V †
0 V ⋆

R ≃ I) where we get the usual ratios

BR(µ → eγ) : BR(τ → eγ) : BR(τ → µγ) = λ6 : λ4 : 1 ∝ M4
3 λ4L̂ ;

(2) degenerate Dirac neutrino eigenvalues, with non degenerate low energy neutrino

masses (the hierarchy of the right-handed neutrino masses is close to the one of

the low energy spectrum, V †
0 V ⋆

R ≃ VM ) where we get

BR(µ → eγ) = tan2 θVM

23 BR(τ → eγ) = f(θVM

12 , θVM

23 )BR(τ → µγ) ∝ M4
3 L̂

with f(θVM

12 , θVM

23 ) of order one 64;
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(3) degenerate Dirac neutrino eigenvalues and low energy neutrino spectrum (right-

handed neutrino close to be degenerate, V †
0 V ⋆

R ≃ I) where we have

BR(µ → eγ) : BR(τ → eγ) : BR(τ → µγ) = 1 : λ4 : λ2 ∝ M4
3 λ10L̂ .
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