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Certain null singularities in ten dimensional supergravity have natural holographic

duals in terms of Matrix Theory and generalizations of the AdS/CFT correspondence.

In many situations the holographic duals appear to be well defined in regions where the
supergravity develops singularities. We describe some recent progress in this area.

1. Introduction

This talk is based on work done in collaboration with Jeremy Michelson, K. Narayan
and Sandip Trivedi 1, 2, 3, 4.

Space-like and null singularities pose a peculiar puzzle. At these singularities,
”time” begins or ends - and it is not clear what is the meaning of this. Classic
examples of such singularities are those which appear in the interior of neutral
black holes and those which appear in cosmology.

It has been always suspected that near singularities usual notions of space and
time break down and a consistent quantization of gravity would provide a more
abstract structure which replaces space-time. However we do not know as yet what
this abstract structure could be in general. In some situations, String Theory has
provided concrete ideas about the nature of this structure. These are situations
where gravitational physics has a tractable holographic description 5 in terms of a
non-gravitational theory in lower number of space-time dimensions. In view of the
spectacular success of the holographic principle in black hole physics, it is natu-
ral to explore whether this can be used to understand conceptual issues posed by
singularities.

In String Theory, holography is a special case of a more general duality between
open and closed strings. This duality implies that the dynamics of open strings con-
tains the dynamics of closed strings. Since closed strings contain gravity, space-time
questions can be posed in the open string theory which does not contain gravity and
therefore conceptually easier. Under special circumstances, the open string theory
can be truncated to its low energy limit - which is a gauge theory on a fixed back-
ground. In these situations, open-closed duality becomes particularly useful. The
simplest example is non-critical closed string theory in two space-time dimensions.
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Here the holographic theory is gauged Matrix Quantum Mechanics 6. The second
class of examples involve string theory or M theory defined on spacetimes with a
compact null direction. Then a sector of the theory with some specified momen-
tum in this null direction is dual to a d + 1 dimensional gauge theory, where d

depends on the number of additional (spacelike) compact directions. Using stan-
dard terminology we will call them Matrix theories 7-11. Finally, the celebrated
AdS/CFT correspondence 12 relates closed string theory in asymptotically anti-de-
Sitter spacetimes to gauge theories living on their boundaries. In all these cases,
the dynamical ”bulk” spacetime (on which the closed string theory lives) is an ap-
proximation which holds in a specific regime of the gauge theory. In this regime,
the closed string theory reduces to supergravity. Generically, there is no space-time
interpretation, though the gauge theory may make perfect sense. This fact opens
up the possibility that in regions where the bulk gravity description is singular, one
may have a well defined gauge theory description and one has an answer to the
question : What replaces space-time ?

Treating time dependent backgrounds in string theory, particularly those with
singularities, has been notoriously difficult. However, some modest progress has
been made recently in both worldsheet formulations as well as holographic formula-
tions of all the three types mentioned above. The key idea in these various types of
holography are similar. One looks for toy models where the space-time background
on which the closed string theory is defined is singular, but the holographic gauge
theory description does not appear to be problematic. Thus, the gauge theory pro-
vides the correct description of the region which would appear singular if the gravity
interpretation is extrapolated beyond its regime of validity.

In the following, we will discuss recent attempts to understand cosmological
singularities using Matrix theories as well as AdS/CFT correspondence a.

2. Matrix Big Bangs

In 14, Craps et. al. considered Type IIA string theory with string coupling gs and
string length ls, living on a flat string frame metric with a compact null direction
x− with radius R

ds2 = 2dx+dx− + d~x · d~x, (1)

and a dilaton linearly proportional to the other null direction x+

Φ = −Qx+, (2)

As a supergravity solution, this background preserves half of the supersymmetries
which satisfy Γ+ε = 0. For Q > 0, the effective string coupling ḡs = gse

−Qx+
is small

for x+ →∞ and one should have a perturbative spectrum, while for x+ → −∞ the

aFor discussions of cosmological singularities in the Matrix Model description of two dimensional

string theory, see 13
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string theory becomes strongly coupled and the corresponding Einstein metric has
a null big bang like singularity b.

For Q = 0, DLCQ string theory in this background with a momentum

p− =
J

R
(3)

is dual to a 1 + 1 dimensional U(J) gauge theory - usually called Matrix String
Theory 10-11 - living on a circle of radius R̃ given by

R̃ =
l2s
R

; (4)

and a Yang-Mills coupling given by

gYM =
R

gsl2s
. (5)

The bosonic part of the gauge theory action is

S =
∫
dτ

∫ 2πR̃

0

dσTr{ 1
2g2
YM

F 2
τσ +

1
2

(DτX
i)2 − 1

2
(DσX

i)2 +
g2
YM

4
[Xi, Xj ]2} (6)

where Xi, i = 1 · · · 8 are adjoint scalars. The above relations show that when the
original string coupling is small, gs � 1, the Yang-Mills coupling is large and the
theory flows to the IR. The potential term then restricts the Xi to belong to a
cartan subalgebra and may be therefore chosen to be diagonal

Xi = diag(Xi
1, X

i
2, · · ·Xi

J) (7)

in a suitable gauge. The gauge field decouples, and one is left with 8J scalar fields
Xi
n in 1 + 1 dimensions. The boundary conditions of these fields are labelled by the

conjugacy classes of the group. For example, the maximally twisted sector has

Xi
n(σ + 2π) = Xi

n+1(σ) (8)

where Xi
J+1 ≡ Xi

1. In this sector we therefore have 8 scalars on a circle of size
2πl2s

J
R and the action then reduces to the worldsheet action of a single string in a

light cone gauge. As is appropriate in the light cone gauge, the spatial extent of
the worldsheet is proportional to the longitudinal momentum p−. In a similar way
one has boundary conditions with cycles of smaller length - these sectors represent
multiple strings. Effects of finite gYM R̃ are now manifested as string interactions.

The fields in the Yang-Mills theory are the low energy degrees of freedom of
open string field theory on D1 branes. Holography is realized as the metamorphosis
of the fields Xi of the YM theory into transverse coordinates in ten dimensional
space-time. Note that this space-time interpretation is valid only when gs � 1.
For finite gs the Yang-Mills theory of course makes perfect sense - but there is no
natural space-time interpretation of the nonabelian degrees of freedom.

bFor Q < 0 we have a time-reversed situation where the big bang is replaced by the big crunch.

In this paper we will exclusively deal with Q > 0.
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In 14 it was argued that a similar Matrix String Theory may be written down
for Q 6= 0. The line of reasoning which leads to this is similar to the Sen-Seiberg
argument 15, but more subtle - as explained in 14. The action is a simple modification
of (6)

S =
∫
dτ

∫ 2πR̃

0

dσTr{ e
−Qτ

2g2
YM

F 2
τσ +

1
2

(DτX
i)2 − 1

2
(DσX

i)2 +
g2
YM

4
eQτ [Xi, Xj ]2}

(9)
Since this is essentially the action of J D1 branes in the light cone gauge, τ is the
same as the coordinate x+ in the background. Thus, in the far future in light cone
time, the gauge theory is strongly coupled, while near the singularity at x+ → −∞
the gauge theory is weakly coupled. This means that while the theory has a nice
interpretation as a space-time theory with dynamical gravity in the future, such an
interpretation breaks down at τ → −∞ - precisely the place where there is a null
singularity. Here all the J2 degrees of freedom are relevant and might ”resolve” the
singularity.

2.1. IIB Big Bangs

The Type IIB version of this background shows a richer structure 2. The background
is once again given by (1) and (2) where both x− and x8 are compact,

x− ∼ x− + 2πR, x8 ∼ x8 + 2πRB (10)

The usual DLCQ Matrix Theory logic then implies that string theory in the sector
with p− = J/R and p8 = 0 is described by a SU(J) 2+1 dimensional Yang-Mills
theory of J D2 branes 9, 10. This gauge theory lives on a T 2 with sides

Rρ = gB
l2B
R

Rσ =
l2B
R

(11)

where gB , lB are the string coupling and the string length of the original IIB theory.
The dimensional coupling constant of the Yang-Mills is

G2
YM =

R

RσRρ
=
RR2

B

gBl4B
(12)

We will call this theory ”Matrix Membrane Theory”.
The action of this matrix membrane theory is given by

S =
∫
dτ

∫ 2πRρ

0

dσ

∫ 2πRσ

0

dρ L (13)

where

L = Tr{1
2

[(DτX
a)2 − (DσX

a)2 − e2Qτ (DρX
a)2] +

1
2(GYMeQτ )2

[F 2
στ + e2Qτ (F 2

ρτ − F 2
ρσ)]

+
(GYMeQτ )2

4
[Xa, Xb]2}, (14)
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where Xa, a = 1 · · · 7 are now seven scalar fields and Fµν denotes the gauge field
strength. Note that there is a factor of eQτ with each ∂ρ or a covariant vector
component Vρ, in addition to a factor of eQτ for each GYM

For Q = 0 and gB � 1 this action reproduces the worldsheet action for Type
IIB strings in the light cone gauge. In this limit the commutator terms force the
fields to be diagonal. The gauge field strengths can be dualized to a scalar which we
will call X8, so that we have a 2+1 dimensional action of eight scalar fields. Finally,
since for small gB we have Rρ � Rσ, the action reduces to a 1+1 dimensional action
which may be then identified with the Green-Schwarz light cone worldsheet theory.
Once again sectors of boundary conditions describe upto J strings with the spatial
extent of the worldsheeet proportional to their longitudinal momenta.

This story changes interestingly when Q 6= 0. The mass scale associated with
the Kaluza Klein modes in the ρ direction is given by MKK ∼ R

gBl2B
while the mass

scale which determines the non-abelian dynamics is GYM given in (12). Thus for
RB � lB the KK modes are much lighter than the Yang-Mills scale. In our present
time-dependent context, these scales become time-dependent and it follows from the
coupling and the ∂ρ terms in (14) that the KK modes are expected to decouple much
later than the time when the non-abelian excitations decouple. Therefore, there is a
regime where we can ignore the non-abelian excitations, but cannot ignore the KK
modes. In this regime, the Matrix Membrane lagrangian density is given by

Ldiag =
1
2

[
8∑
I=1

(∂τXI)2 − (∂σXI)2 − e2Qτ (∂ρXI)2]− 2µ2
8∑
I=1

(XI)2 (15)

It is tempting to argue that as τ → ∞ the Kaluza-Klein modes in the ρ direction
become infinitely massive, so that the theory becomes 1+1 dimensional and exactly
identical to the Green-Schwarz string action in this background. However, this is
too hasty since we have a time-dependent background here and energetic arguments
do not apply.

Instead, we should ask whether any state at an early time evolves into a state of
the perturbative fundamental string - i.e. states which do not carry any momentum
in the ρ direction. The modes of the field Y I(ρ, σ, τ) which are positive frequency
at early times are given by

ϕ(in)
m,n = { R

8π2l4BgB
}1/2 Γ(1− iωm/Q) e

i(mR
l2
B

σ+ nR

gBl
2
B

ρ)
J−iωmQ (κneQτ ) (16)

where

ω2
m =

m2R2

l4B
κn =

nR

QgBl2B
(17)

while those which are appropriate at late times are

ϕ(out)
m,n = { R

16πl4BgBQ
}1/2 e

i(mR
l2
B

σ+ nR

gBl
2
B

ρ)
H

(2)

−iωmQ
(κneQτ ) (18)
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The problem at hand is identical to that of a bunch of two dimensional scalar
field (living on τ, σ spacetime) with time dependent masses. It is well known that
such time dependence leads to particle production or depletion 16, 17,18. Because
of standard relations between the Hankel function H

(2)
ν (z) and the Bessel function

Jν(z) there is a non-trivial Bogoliubov transformation between these modes which
imply that the vacua defined by the in and out modes are not equivalent. In fact,
the out vacuum |0 >out is a squeezed state of the ”in” particles. In other words, if
we require that the final state at late times does not contain any of the KK modes,
the initial state must be a squeezed state of these modes. The occupation number of
the in modes in the out state is thermal

out < 0| a†I,(in)
m,n aI,(in)

m,n |0 >out=
1

e
2πωm
Q − 1

(19)

Note that the Bogoliubov coefficients and number densitites depend only onm for all
n 6= 0. This follows from the fact that n- dependence may be removed by shifting the
time τ by log(κn). However, the modes with n = 0 need special treatment. Indeed,
in the n→ 0 limit the “in” modes (16) go over to standard positive frequency modes
of the form e−iωmτ as expected. In this limit, however, the out modes (18) contain
both positive and negative frequencies. This is of course a wrong choice, since for
these n = 0 modes there is no difference between “in” and “out” states. In fact,
the “out” modes (18) have been chosen by considering an appropriate large time
property for nonzero n and do not apply for n = 0. In other words, the squeezed
state contains only the n 6= 0 modes.

The operators aIm,n in fact create states of (p.q) strings in the original Type IIB
theory 9. To see this, let us recall how the light cone IIB fundamental string states
arise from the n = 0 modes of the Matrix Membrane. In this sector, the action is
exactly the Green-Schwarz action. The oscillators a†Im,0 defined above are in fact the
world sheet oscillators and create excited states of a string. The gauge invariance
of the theory allows nontrivial boundary conditions, so that m defined above can
be fractional. Equivalently the boundary conditions are characterized by conjugacy
classes of the gauge group. The longest cycle corresponds to a single string whose
σ coordinate has an extent of 2πJ l

2
B

R which is the same as 2πl2Bp− as it should be
in the light cone gauge. Shorter cycles lead to multiple strings - the sum of the
lengths of the strings is always 2πl2Bp−, so that there could be at most J strings.
Note that m is the momentum in the σ direction : a state with net momentum
in the σ direction in fact corresponds to a fundamental IIB string wound in the
x− direction. This may be easily seen from the chain of dualities which led to the
Matrix Membrane.

As shown in 9, following the arguments of 20,19,21, SL(2, Z) transformations on
the torus on which the Yang-Mills theory lives become the SL(2, Z) transformations
which relate (p, q) strings in the original IIB theory. In particular, the oscillators
aI0,n create states of a D-string.

The state |0 >out therefore contain excited states of these (p, q) strings. The
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number of such strings depends on the choice of the conjugacy classes characterz-
ing boundary conditions. Since each (m,n) quantum number is accompanied by a
partner with (−m,−n) this state does not carry any F-string or D-string winding
number. Finally this squeezed state contains only n 6= 0 modes, i.e. they do not
contain the states of a pure F-string. We therefore conclude that in this toy model,
the initial state has to be chosen as a special squeezed state of unwound (p, q) strings
near the big bang to ensure that the late time spectrum contains only perturbative
strings.

2.2. pp-wave Big Bangs

The nonabelian degrees of freedom of Matrix String Theory or Matrix Membrane
theory become important near the “singularity”. In the background considered
above, this theory has one length scale - given by the Yang-Mills coupling G−1

YM .
It would be worthwhile to find similar situations with an additional length scale
with the hope that tuning the dimensionless ratio would allow us to go to a regime
where some class of nonableian configurations become important. One such example
is provided by pp-waves 2,1. The string frame metric (1) is now modified to c

ds2 = 2dx+dx−− 4µ2[(x1)2 + · · · (x6)2](dx+)2− 8µx7dx8dx+ + [(dx1)2 + · · · (dx8)2]
(20)

The dilaton remains the same as (2), and there is an additional 5-form field strength

F+1234 = F+5678 = µ eQx
+

(21)

For Q = 0−, the matrix membrane action in this background has been derived in
23. The matrix membrane action for Q 6= 0 now has additional terms 2

L = Tr { 1
2

[(DτX
a)2 − (DσX

a)2 − e2Qτ (DρX
a)2] +

1
2(GYMeQτ )2

[F 2
στ + e2Qτ (F 2

ρτ − F 2
ρσ)]

− 2µ2[(X1)2 + · · · (X6)2 + 4(X7)2] +
(GYMeQτ )2

4
[Xa, Xb]2

− 4µ
(GYMeQτ )

eQτX7 Fρσ − 8µi(GYMeQτ )X7 [X5, X6] }, (22)

The new length scale is now µ.
Let us briefly recall the physics of this model for Q = 0. When the original IIB

theory is weakly coupled, gB � 1 with µl4B
RR2

B
∼ O(1), the effective coupling constant

of this YM theory is strong. Then, along the lines of the discussion in the previous
subsection, the action becomes identical to the worldsheet action for Green-Schwarz
string in the pp-wave background d. In fact, as shown in 26, integrating out the
Kaluza Klein modes in the ρ direction generates string couplings with exactly the
correct strength.

cThe coordinates used here make a space-like isometry explicit 22

dThe dualization required to convert the gauge field to a scalar involves a time dependent rotation
23.
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It is straightforward to see that one could rescale the fields and the coordinates
to write the lagrangian L in the form

L =
µ

G2
YM

L (µ = 1, GYM = 1) (23)

Therefore, in the limit λ � 1 the Yang-Mills theory becomes weakly coupled and
nonabelian classical solutions play a significant role. These classical solutions are
fuzzy ellipsoids discussed in 23,24 similar to fuzzy spheres in M theory and Type IIA
pp-waves 25,

X5 = 2
√

2µl
3
p

R J1,

X6 = 2
√

2µl
3
p

R J2,

X7 = 2µl
3
p

R J3, (24)

where Ja obey the SU(2) algebra, and the remaining matrices Xi vanish. These
solutions have vanishing light cone energy and can be shown 23,24 to preserve all 24
supercharges of the M-theory background. In the original Type IIB description they
are fuzzy D3 branes with a topology S2 × S1 where the S1 factor is the compact
space direction.

For Q 6= 0 the coupling is always weak near τ → −∞ so that these fuzzy ellip-
soids proliferate. As τ increases the coupling gets stronger and one would expect
that they should not be present, leaving behind only perturbative abelian degrees
of freedom representing the fundamental string. This indeed happens. The size of
the ellipsoids is now time dependent : with some initial size the equations of mo-
tion may be used to examine the size at later times. Numerical results 2 show that
with generic initial conditions, the size oscillates with an amplitude decaying fast
with time. In other words, at late times we are left with only the abelian configu-
rations which can be now interpreted as fundamental strings. The phenomenon of
production/depletion of (p, q) strings is identical to the µ = 0 case described in the
previous subsection.

2.3. Issues

The key feature of holographic models of this type is that conventional space-time
is an emergent phenomenon in a very special regime. In matrix theories, this is the
regime where the gauge theory coupling is strong so that the fields of the theory
can be interpreted as space-time coordinates of a point on a fundamental string. In
the toy models of cosmology described above, such an interpretation appears to be
valid at late times. If we forcibly extrapolate this interpretation to early times we
encounter a singularity. At this singularity, however, the holographic gauge theory
is weakly coupled : as such a space-time interpretation is not valid in any case.
Since the coupling is weak there is a good chance that we have a well defined time
evolution.
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There are several caveats in this general story. The success of Matrix Theory
generally depends on supersymmetry. Even though the backgrounds considered have
half of the supersymmetries, the matrix theory does not. One of the consequences
of this is that a potential for the fields Xa could be generated which spoils the
interpretation in terms of space-time coordinates. This issue has been investigated
in 27 and 28. Indeed there is a potential at one loop. However it turns out that at
late times the potential vanishes fast, indicating that Xa become moduli e.

An important question relates to backreaction. Sometimes null singularities of
the type described here are unstable under perturbations. In the past, orbifold
singularities of this type have been investigated as possibly consistent backgrounds
for perturbative string theory. However, it was soon found that these null singularities
turn spacelike under small perturbations - large curvatures develop invalidating
the use of perturbative string theory 31. In our case, the significance of such an
instability, if present, is rather different. Here the string theory is in any case strongly
coupled near the singularity and there is no question of a perturbative description.
Rather the correct description is provided by a weakly coupled Yang-Mills theory.
The question now is to find out the meaning of a bulk instability in the gauge
theory. It remains to be seen if this causes any problem even though the coupling
is weak. This issue is particularly significant for variations of this model based on
null branes 30.

Perhaps the most important question is about continuation through the singu-
larity. Even though the holographic theory is weakly coupled near the null singular-
ity, the hamiltonian expressed in terms of the conjugate momenta have a singular
behavior as one approaches this region - and it is not clear whether there is an
unambiguous prescription to continue back in time beyond this point. Recently 32

has put forward an interesting proposal to address this issue.

3. Null Singularities in the AdS/CFT correspondence

In many respects the AdS/CFT correspondence is a more controlled example of the
holographic principle. In its simplest setting, the correspondence implies IIB string
theory on AdS5×S5 with a constant 5-form flux is dual to 3+1 dimensional N = 4
supersymmetric SU(N) Yang-Mills theory which lives on the boundary of AdS5.
If RAdS denotes the radius of the S5 as well as the curvature length scale of AdS5

and gs denotes the string coupling, the coupling constant gYM and the rank of the
gauge group N of the Yang Mills theory are related by

R4
AdS

l4s
= 4πg2

YMN gs = g2
YM (25)

eIn 28 it is claimed that the potential in fact vanishes. However it turns out that the quantity which

is computed in this paper is a time averaged potential rather than the time dependent potential
29
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This immediately implies that the gauge theory describes classical string theory in
the ’t Hooft limit

N →∞ gYM → 0 g2
YMN = finite (26)

The low energy limit of the closed string theory - supergravity - is a good ap-
proximation only in the strong coupling regime g2

YMN � 1. For small g2
YMN su-

pergravity and hence conventional space-time is not a good description of the gauge
theory dynamics. Finite N corrections correspond to string loop effects.

There have been several approaches to cosmological singularities by finding ap-
propriate modifications of the AdS solutions which correspond to deformations of
the Yang-Mills theory or to states in the theory 33. We will discuss one approach
developed in 3,4,34 f . The hope is similar to that in the Matrix Theory approach.
The idea is to find bulk solutions which have cosmological singularities where the
usual notions of space-time break down, while the gauge theory description remains
tractable.

In the following we will recount the main points in 3,4.

3.1. The Supergravity Background and the Conjecture

The usual AdS5 × S5 solution is given by the Einstein frame metric in Poincare
coordinates

ds2 = (
r2

R2
AdS

)ηµνdxµdxν + (
R2
AdS

r2
)dr2 +R2

AdSdΩ2
5 (27)

and a 5-form field strength and dilaton Φ

F(5) = R4
AdS(ω5 + ∗10ω5) Φ = constant (28)

This has maximal supersymmetry.
We consider supergravity solutions which are non-normalizable deformations of

this,

ds2 = (
r2

R2
AdS

)g̃µν(x)dxµdxν + (
R2
AdS

r2
)dr2 +R2

AdSdΩ2
5 ,

Φ = Φ(x)

F(5) = R4
AdS(ω5 + ∗10ω5) (29)

The equations of motion then imply that the Ricci tensor R̃µν constructed from the
metric g̃µν(x) must obey the equation

R̃µν =
1
2
∂µφ∂νΦ, (30)

while the dilaton must satisfy

∂µ(
√
− det(g̃) g̃µν∂νΦ) = 0. (31)

fSee 35 for an interesting approach to find signatures of space-like singularities inside AdS black

holes in the CFT
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It turns out that this solution is the near-horizon limit of the geometry produced
by three branes whose worldvolume metric is given by g̃µν(x).

For generic g̃µν(x) this solution will have curvature singularities at the Poincare
horizon at r = 0. This does not happen when g̃µν(x) and Φ(x) are functions of a
null coordinate x+. We will therefore restrict our attention to such solutions. Such
solutions retain half of the supersymmetries with parameters ε satisfying Γ+ε =
0. Furthermore, for reasons which will become clear soon, we will consider brane
metrics which are conformal to flat space

g̃µν(x)dxµdxν = ef(x+)
[
−2dx+dx− + dx2

1 + dx2
2

]
(32)

The equations of motion (30) then require that the dilaton is also a function of x+

alone. The dilaton equation (31) is automatically satisfied, while (30) simplifies to

1
2

(f ′)2 − f ′′ =
1
2

(∂+Φ)2. (33)

where prime denotes derivative with respect to x+.
The conjecture is that string theory in this null background is dual to 3 + 1

dimensional N = 4 Yang-Mills theory which lives on a background space-time given
by g̃µν(x) and a x+ dependent coupling

gYM (x+) = eΦ(x+)/2√gs (34)

The bosonic part of the action is

S =
∫
d4x Tr{1

4
e−ΦFµνF

µν +
1
2

(Dµχ
I)(DµχI) +

1
4

[χI , χJ ]2} (35)

where χI , I = 1, · · · 6 are the adjoint scalars.
There are several pieces of evidence for the validity of this conjecture. First,

when f � 1, we also have Φ � 1. In that case, the solution represents small non-
normalizable metric and dilaton deformations of standard AdS5 × S5. AdS/CFT
correspondence then implies that the dual gauge theory is deformed by operators
which are dual to these modes, viz. the energy momentum tensor Tµν and TrF 2

respectively. This is evident from the action (35). Secondly, we may consider the
action of a single probe D3 brane in the background and examine the way f(x+) and
Φ(x+) sppear - it is easy to check that this is consistent with (35). Finally, as noted
above, our solution is the near-horizon limit of the asymptotically flat geometry of
a stack of D3 branes with a curved brane wiorldvolume g.

We will consider solutions which are AdS5 × S5 in asymptotic null time x+ →
±∞, but develop null singularities for some value of x+ which may be chosen to be
at x+ = 0. However, we will require that gs � 1 and the effective string coupling
eΦgs remains weak for all x+.. This latter feature distinguishes our solution from

gThe full supergravity solution is given in 3.
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some others in the literature h. A nice example of such a solution is

ef(x+) = tanh2 x+ eΦ = gs

∣∣∣∣tanh
x+

2

∣∣∣∣
√

8

. (36)

At x+ = 0 all local curvature invariants are bounded. However this point may
be reached in a finite physical time. For example the affine parameter λ along a
geodesic x+(λ) with all other coordinates constant is given by

λ = x+ − tanh x+ (37)

Thus x+ = 0 can be reached in a finite affine parameter. Furthermore, it turns
out that tidal forces between neighboring geodesics diverge at this point. Therefore
x+ = 0 is a genuine null singularity.

Consider the solution as a time evolution in light cone time x+. At x+ →
−∞ the Yang-Mills coupling approaches

√
gs exponentially. In the dual Yang-Mills

theory, we will always work in the ’t Hooft limit gs → 0, N → ∞ with gsN finite
and large. Therefore, according to the usual AdS/CFT correspondence, the ground
state of the theory is dual to supergravity in AdS5 × S5 as stated above. This
vacuum evolves in time according to the Yang-Mills hamiltonian whose effective
coupling decreases. The dual description of this time evolution is the supergravity
solution described above. Supergravity, however, makes sense only when the Yang-
Mills coupling is large. Thus as we approach x+ → 0 the coupling approaches zero
and the supergravity description becomes meaningless. The singularity therefore
appears at a place where we expect a space-time interpretation of the gauge theory
to break down.

3.2. Some Properties of the Gauge Theory Dual

As emphasized above, one of the salient features of our toy model is that the gauge
theory is weakly coupled at the ”singularity”, pretty much like the Matrix Theory
examples given above. This is reassuring, since one would hope that weakly coupled
gauge theory makes sense and provides the alternative structure which replaces
dynamical bulk space time in this region. However, it is precisely at this point that
the nondynamical spacetime of the gauge theory shrinks to zero size !

Normally this would be a disaster since a gauge theory on a zero size space-time
would be singular even if it is weakly coupled. What saves the day is the fact that
this particular gauge theory is Weyl invariant. This is evident at the classical level -
the factor ef(x+) does not appear in the classical action. If the coupling was constant
the theory would have been conformally invariant (in the sense of invariance under
conformal diffeomorphisms) as well. Here the x+ dependence of the coupling breaks

hThese include orbifold models, backgrounds with time dependent warping, models based on

tachyon condensation. References to the original literature can be found in 3. Some of these topics

are reviewed in 36.
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these conformal symmetries but retains Weyl invariance at least classically. This
means that at the classical level our gauge theory simply does not see the shrinking
Weyl factor.

Usually Weyl invariance of quantum field theories is broken at the quantum
level by anomalies. Our gauge theory is a special case of N = 4 Yang-Mills theory
coupled to nondynamical conformal supergravity, where only the metric and the
dilaton fields of the background supergravity are turned on. The Weyl anomaly of
this theory has been worked out a while ago with the result 37,38,39.

< Tµµ >= − N2

64π2
{2(RµνRµν −

1
3
R2) + 4

[
2(Rµν − 1

3
Rgµν)∂µΦ∂νΦ + (∇2Φ)2

]
}

(38)
In fact, it turns out that the operator Tµµ involves only scalars made out of conformal
supergravity fields i. In our case, the only nonvanishing components of the Riemann
are R+i+i with i = 1, 2 and the only nonvanishing component of ∂µΦ is ∂+Φ. Since
there are no nonvanishing components with a contravariant + index, we cannot
form a scalar by contracting these tensors. Thereofore the Weyl anomaly vanishes
for our null background. This implies that correlation functions of dressed conformal
operators are equal to those in a flat metric with the same x+ dependent coupling,

〈
∏
a

ef(x+
a )∆a Oa(xa)〉efηµν ,Φ(x+) = 〈

∏
a

Oa(xa)〉ηµν ,Φ(x+) (39)

where ∆a is the conformal dimension of the operator Oa. In other words, the shrink-
ing conformal factor is invisible to these observables at the quantum level.

We are therefore left with a gauge theory on flat space with a x+ dependent
coupling. The coupling, however, appears as a overall factor in the gauge field term.
Generally, this would imply that the propagator of canonically normalized fields
would be unconventional. This could be a danger since the derivatives of Φ(x+)
diverge at x+ = 0. Luckily this does not happen either. To see this, fix a light cone
gauge 40

A− = 0 (40)

The fields A+ are then determined in terms of the transverse components by a
constraint equation which turns out to be identical to that for the standard N = 4
theory by virtue of the fact that the coupling depends only on x+,

1
2
∂−A+ = ∂iAi +

i

∂−
[Ai, ∂−Ai] (41)

Let us now define new fields Āi, Ā+ as follows

Āi(x) = e−Φ(x+)/2Ai(x) Ā+(x) = e−Φ(x+)/2A+(x) (42)

iWe are grateful to A. Tseytlin for a correspondence about this point
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Since Φ is a function of x+ alone, the equation (41) is identical with the replacement
Ai → Āi, A+ → A+. In terms of these new fields it may be easily checked that
upto terms which are quadratic in the fields,

e−Φ(x+)TrF 2 = TrF̄ 2 − 1
2
∂−
[
(∂+Φ)ĀiĀi

]
(43)

where F̄ is the field strength constructed out of Ā. Since the additional term is a
total derivative, it does not contribute to the action. This means that the quadratic
terms in the action are identical to that in the light cone gauge action for standard
N = 4 theory. The factors of eΦ and its derivatives appear only in the interaction
terms of the Ā fields. Since the coupling eΦ/2 approaches zero at the singularity
and is small and bounded everywhere else, one might expect that the correlation
functions of the fields Āµ are well behaved.

Generically, time dependent backgrounds lead to particle production. An initial
vacuum state typically evolves into a squeezed state of particle - antiparticle pairs.
In our null background, however, such processes do not occur. The argument relies
on the fact that in light front quantization the states are labelled by k−, k1, k2

where 0 ≤ k− ≤ ∞ and −∞ ≤ k1, k2 ≤ ∞. Since the background depends only on
x+, the momentum along x−, k− is conserved. The fock vacuum of the theory has
k− = ki = 0. It is then clear that this state cannot evolve into a state containing
particles with nonzero k− since there are no states with negative k−. The k− = 0
sector, however, may cause problems with this argument.

3.3. The worldsheet theory

Since the effective ’t Hooft coupling of the Yang-Mills theory becomes small at the
singularity, it is natural to expect that stringy effects are large. At the same time,
in the large N limit string loop effects should be small as well. It is of interest to
investigate whether worldhseet string theory could make sense in this background.
Unfortunately, because of the presence of RR flux, we do not have a tractable
worldsheet formulation of the full worldsheet theory. However a look at the bosonic
part of the action in a physical gauge makes it clear that stringy effects are important
near the singularity. For this purpose, let us write the metric in slightly different
coordinates

ds2 =
1
y2

[
ef(x+){2dx+dx− + d~x2}+ d~y2

]
(44)

where ~y = (y1 · · · y6). Fixing the light cone gauge x+ = τ following 41 the bosonic
part of the action becomes

S =
1
2

∫
dσdτ

[
(∂τ~x)2 + e−f(τ)(∂τ~y)2 − 1

y4
e2f(τ)eΦ(τ)(∂σ~x)2 − 1

y4
ef(τ)eΦ(τ)(∂σ~y)2

]
,

(45)
Since both ef and eΦ vanish at τ = 0, the spatial gradient terms become small here,
which implies that stringy modes are not suppressed. It is not clear as yet whether
the worldsheet theory is non-singular.
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3.4. Penrose Limits and Matrix Theory

To learn a little more about the string theory in the bulk it is useful to consider the
Penrose limit of our background. For this purpose it is convenient to rewrite the
metric as

ds2 = r2[−dt2 + dq2 + eF (z+)(dx2
2 + dx2

3)] +
dr2

r2
+ dψ2 + sin2 ψdΩ2

4, (46)

where we have used the affine parameter z+ defined by z+ =
∫ x+

dx ef(x) along
a null geodesic instead of x+, and the function F (z+) is defined by F (z+) =
f(x+(z+)). The coordinates q, t are defined by

z+ =
1√
2

(q + t), x− =
1√
2

(t− q). (47)

Now we zoom on a null geodesic given by

r = sin U, t = − cot U, ψ = U, (48)

After the usual scaling associated with a Penrose limit and a complicated coordinate
transformation the Einstein frame metric is given by 3

ds2 = 2dUdV − [H(U) ~X2 + ~Y 2](dU)2 + d ~X2 + d~Y 2. (49)

In the Penrose limit, the coordinate U is related to the coordinate z+ by z+ −
1√
2

cot U and the function H(U) is determined in terms of F (z+) by

H(U) = 1− [1 + 2(z+)2]2

4

[
d2F

(dz+)2
+

1
2
( dF
dz+

)2] = 1 +
[1 + 2(z+)2]2

8

(
dΦ
dz+

)2

,

(50)
In terms of these coordinates, the singularity appears at U = Pi/2. Near this point,

H(U) ∼ 1
(U − π

2 )2
, eΦ(U) ∼ (U − π

2
)
√

8
3 . (51)

Thus the Penrose limit of our original space-time is singular as well. In fact, it
turns out that the pp-wave is singular if and only if the pre-Penrose limit original
spacetime is singular 42.

The pp-wave space-time has space-like and null isometries. In a way similar to
the null dilaton cosmologies in the previous section, one may write down a matrix
membrane theory for such a background which has a compact null direction x− ∼
x− + 2πR and x8 ∼ x8 + 2πRB . The resulting 2 + 1 dimensional Yang-Mills action
is

L = Tr
1
2
{[(Dτχ

α)2 − eΦ(τ)(Dσχ
α)2 − e−Φ(τ)(Dρχ

α)2]

+
1

G2
YM

[eΦ(τ)F 2
στ + e−Φ(τ)F 2

ρτ − F 2
ρσ]

− H(τ)[(χ1)2 + (χ2)2]− (χ3)2 · · · (χ6)2 − 4(χ7)2

+
G2
YM

2
[χα, χβ ]2 + 2iGYMχ7[χ5, χ6] +

4
GYM

χ7Fσρ}, (52)
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Unlike the matrix membrane in the linear null dilaton discussed in the previous
section (i) the Yang-Mills coupling of this model is independent of τ , (ii) both ∂ρ
and ∂σ have time-dependent factors. In the IR, the fields in the theory become
commuting and may be chosen to be diagonal and the extent of the ρ direction
shrinks to zero size. The lagrangian then reduces to the light cone gauge Green-
Schwarz worldsheet lagrangian for the fundamental string in the relevant pp-wave
background. An analysis similar to that in section 2.1 now shows that excited modes
of both D-strings and fundamental strings are now produced by the time dependent
background.

It would be interesting to analyze worldsheet string theory in this time dependent
pp-wave. Backgrounds with similar singularities in the string frame metric have been
studied earlier 43, 42 . In that case the worldsheet equations of motion are solvable
in terms of special functions and certain statements about the validity of string
theory could be made. In our background the worldsheet action is quadratic in the
fields, but the equations of motion are not readily solvable. Our analysis of the
Matrix Theory seems to indicate that nonperturbative physics becomes important.
Nevertheless some insight from the worldsheet theory could be valuable.

3.5. Issues

The toy model of null cosmology described in this section might provide an inter-
esting way to resolve a null singularity. In the asymptotic past (in light cone time)
the gauge theory has a valid space-time interpretation in terms of supergravity. As
we approach x+ = 0, the ’t Hooft coupling approaches zero, and the space-time
description breaks down. Our investigations suggest that the weakly coupled gauge
theory remains controlled and it is this description which should be used to ap-
proach and even continue past the singularity. Our analysis is not detailed enough
to decide whether such a continuation is indeed possible.

Some of our conclusions were based on a treatment in the light cone gauge and in
light front quantization. Sometimes light front quantization leads to subtleties with
the zero longitudinal momentum mode. These subtleties could give rise to infra-red
effects which have to be interpreted suitably.

As in the Matrix Theory models described in the previous section, backreaction
due to an initially smooth perturbation which corresponds to a nice normalizable
initial wavefunction of the gauge theory is an interesting question. Note that unlike
the Matrix theory example, the bulk string coupling is small near the singular-
ity, though stringy effects are large. If such a perturbation results in a curvature
singularity in the bulk, perturbative string theory will certainly break down here.
However, the main idea here is use the gauge theory description in this region. It
remains to be seen whether this causes any problem for the gauge theory inspite of
being weakly coupled. h These and other questions are currently under investigation.
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