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1. Introduction

The standard model (SM) with 45(+3) chiral fields is really remarkable. The big

question in particle physics is, “How does this SM arise?” In late 1980s, there were

attempts for standard-like models (which has three families with the gauge group

SU(3)×SU(2)×U(1)n) 1 from the orbifold compactification of heterotic string. Re-

cent attempts have been more ambitious but it is fair to say that a model free of any

phenomenological problems has not appeared yet even though partially attractive

ones have been proposed in trinification, Pati-Salam, or just SM2. So, searches for

good supersymmetric (SUSY) standard models (SSM) are going on now vigorously.

Even some string models are suggested as roots for explaining the PVLAS data 3. In

this talk, I follow the compactification route through orbifolds. Orbifolds are mani-

folds modded by discrete actions. A nice feature of the orbifold compactification is

that it is basically a geometric one.

For an SSM, we may obtain it either directly from compactification or through

an intermediate step of SUSY GUT. In Z12−I , we have constructed both kinds 4,5,

and here we focus on the direct construction.

In the orbifold construction, there has been the adjoint difficulty that at the Kac-

Moody level k = 1 there does not appear an adjoint matter representation. Thus,

GUTs SU(5), SO(10), and E6 are not good candidates toward SSMs simply because

the Higgs mechanism for breaking the GUT group is not present. This prefers

GUTs with factor groups such as SU(3)3, SU(4)×SU(2)×SU(2) and SU(5)×U(1).

The trinification SU(3)3 is possible only in Z3 which is nice toward achieving 6

sin2 θW = 3
8
. In addition to the sin2 θW problem, there are several problems to be

1
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explained in those models,

• Approximate R-parity for proton longevity,

• Exotics problem,

• Vectorlike pairs problem,

• Successful fit to quark and lepton masses and mixing angles,

• Strong CP problem 7,8, etc.

Among all these problems, the most difficult and urgent one to overcome is the

R-parity problem. One of the nice features of SO(10) GUT is said to be that it has

a scheme to introduce the R-parity. Noting that SO(10) has both spinor (S) and

vector (V) representations, one can assign R = −1 for S and R = +1 for V and

then tree level couplings respect the R-parity. However, this is true only when gauge

singlets are not introduced. The gauge singlets present in string compactification

may behave like a spinor or a vector and the above simple argument of SO(10)

GUT is not applicable to SSMs from string compactification. Thus, the R-parity

consideration is most important. Only, approximate R-parity is obtained in string

models so far 9,4. Previous SSMs from string have not obtained the R-parity problem

properly.

2. Strings on Orbifolds

Orbifolds are manifolded moded by discrete actions. The simplest example is S1/Z2.

In string compactifications, six internal spaces are usually divided into three two

tori T 2 ⊗ T 2 ⊗ T 2. Each T 2 can be moded out be a discrete action. The totality of

each discrete action is given a name ZN orbifold.

The simplest orbifold is moding T 1 by Z2, identifying two points connected by

Z2 actions. The points which stays at the same point under the Z2 action is called

fixed points. Pictorially, we show this S1/Z2 orbifold in Fig. 1 with fixed points

located at the boundary of the fundamental region shown as the thick arc. Another

•

•

Z2

Z2

Z2

Fig. 1. The simplest orbifold S1/Z2.

frequently discussed orbifold is T 2/Z2 shown in Fig. 2, which has four fixed points.

For a ZN orbifold, satisfying θN = 1 for the consistency of the worldsheet spinors,
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• •

• •

Fig. 2. The T 2/Z2 orbifold with two different length scales. The fundamental region is grey-
colored which becomes a pillow after the identifications. The fixed points are at the boundary.

we have

N
∑

i

φi = even integer. (1)

The most widely discussed and relevant one for us in this talk is T 2/Z3 orbifold

shown in Fig. 3. For the coordinates of three two-tori, we use the complexified

•

•

•

Fig. 3. The T 2/Z3 orbifold with 120o rotation actions. The fundamental region is shown as
slashed vertically.

coordinates,a

z ≡ (z1, z2, z3) ∼ θ · z = (e2πiφ1z1, e
2πiφ2z2, e

2πiφ3z3) (2)

where φi denote the rotation angle in the ith torus. Since one T 2/Z3 orbifold has

three fixed points, the (T 2/Z3)
3 orbifold has 27 fixed points. There is only one way

to write the twist vector φ,b

φ = (2
3
, 1

3
, 1

3
). (3)

aFor a more concrete discussion, see 10.
bFor Z6,Z8, and Z12, there are two kinds of twists denoted by Z6−I ,Z6−II ,Z8−I , Z8−II , Z12−I ,
and Z12−II .
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In quantum mechanics, any symmetry action is embedded in the quantum mechani-

cal group space, here in particular in the E8×E′
8 space. The simplest example called

the standard embedding is the following embedding 11,

V = (2
3

1
3

1
3

0 0 0 0 0)(08)′

which breaks E8 down to E6×SU(3). Particle states are classified by untwisted

and twisted sectors. Particles in the untwisted (U) sector are the closed strings in

the torus. Particles in the twisted (T) sector are the closed strings only after the

discrete action is taken into account. These U and T sector strings for a Z3 torus

are shown in Fig. 4. The T strings are located at fixed points as shown in Fig. 4.

•

•

•

ℓ1

ℓ0

Fig. 4. The untwisted string ℓ0 and twisted string ℓ1 are shown.

There is additional degrees of freedom to embed the action in the group space 12,

called the Wilson lines. Wilson lines are embedded in the group space, for example

as (0 0 0 2
3

1
3

1
3

0 0)(08)′. There are consistency conditions for the shift vector V

and the Wilson lines to satisfy for the modular invariance. The Wilson lines can

break the group further. Without a Wilson line in the ith torus, three fixed points

of the ith torus is not distinguishable and theory must respect an S3 permutation

symmetry 14. The three fixed points of the ith torus are distinguished by a Wilson

line in the ith torus, i.e. by V + ai, V − ai, and V .

The massless U strings satisfy just the modular invariance conditions with V

and Wilson lines ai. If P is a weight in the group space the massless U sector strings

must satisfy, for Z3 for example,

P · V = 0,± 1
3

mod integer

P · ai = 0, mod integer
(4)

Since Wilson lines distinguish fixed points, the U sector strings are not affected

by their presence except the modular invariance condition (4). Considering the

untwisted sector vacuum energy, there is a masslessness spectrum condition also 11.

The T sector strings are made closed by the orbifolding action. Thus, the mass-

lessness spectrum condition in the T sector is different from that of the U sector
11. The modular invariance of the theory is given by the required form for V and

ai, and in the T sector distinguishing the fixed points we do not require any more.
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But in the T sector where Wilson lines do not distinguish fixed points, we require

the condition similar to (4) of the U sector.

The method of obtaining orbifold models is explicitly illustrated below with a

Z12−I twist and shift vectors V and a3 = a4.

3. Model

The Z12−I twist is

φ = ( 5
12

, 4
12

, 1
12

) (5)

and we take the following shift vector V and Wilson line 4

V = 1
12

(3 3 3 3 3 5 5 1)(3 9 06)′ (6)

a3 = a4 = 1
3
(2 2 2 − 2 − 2 2 0 2)(0 2 2 05)′ (7)

a1 = a2 = a5 = a6 = 0. (8)

From Eq. (5), we note that (12)- and (56)-tori are truly Z12 moding while the

(34)-torus is Z3 moding. Therefore, Wilson lines distinguishing fixed points are

applicable only to the (34)-torus and that must satisfy a Z3 shift as shown in (7).

Thus, for Z12−I the Wilson line part is very simple, i.e. it is just distinguishing

three fixed points of the (34)-torus. In this sense, Z12−I is a very simple model. For

the gauge symmetry breaking, already there are much more possibilities of breaking

even without Wilson lines in Z12−I because many integers can be assigned in the

numerator of n
12

. In this sense, Z12−I is very simple and also has a simple geometrical

interpretation.

The gauge group is obtained by counting massless vector multiplets which appear

in the untwisted sector,

P · V = 0, mod integer

P · a3 = 0, mod integer
(9)

If we consider V ± = V ± a3 as the twisted sector, a similar condition with V ±

instead of V can give gauge groups in the corresponding twisted sectors. In fact,

the gauge group obtained from (9) is the intersection of gauge groups of V and V ±

which is automatically incoded by the second condition of (9). This gauge group

is the one obtained from the U sector vector multiplets. From (9), we obtain the

following gauge group,

SU(3) × SU(2) × U(1)Y × U(1)4 × [SO(10) × U(1)3]′. (10)

Embedding of the electroweak hypercharge Y is possible for two cases for which

different weak mixing angles are obtained,

Model E : Y = (1
3

1
3

1
3

−1
2

−1
2

0 0 0)(08)′, sin2 θW = 3
8

(11)

Model S : Y = (1
3

1
3

1
3

−1
2

−1
2

0 0 0)(0 0 1 05)′, sin2 θW = 3
14

. (12)
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For Model E, we obtain vectorlike exotics while in Model S there does not appear

any exotics.c Below, we discuss Model E in detail.

Matter particles are obtained from the U sector and the T sector. For the U

sector, the modular invariance condition for chiral matter is P · V = one of the

entries of φ given in Eq. (5), denoted as U1 if it comes from matching with the

first entry, etc. In fact, the CTP conjugates also appear in one of these. The same

chirality set is { 1
12

, 4
12

, 7
12
}.

The fundamental twist φ is the defining one and called the T1 sector. If the twist

is φ, then any integer (n) multiple of φ must be considered also. Thus, we consider

Tn twist sectors up to n = 6.d Since a3 is a Z3 shift 3, 6, 9 multiples of twist do

not have any Wilson line. The other twist sectors, however, can have Wilson lines.

Thus, the twist sectors are denoted as

T 0
1 , T±

1 , T 0
2 , T±

2 , T3, T
0
4 , T±

4 , T 0
5 , T±

5 , T6.

Twisted sector massless condition is given by considering the corresponding twisted

sector vacuum energy, and there is a well-defined way to calculate their chiralities
10. Since T3, T6, T9 sectors do not involve Wilson lines, in addition they must satisfy

in a sense an untwisted sector-like modular invariance condition similar to (9),

generalized to

(P + kV ) · a3 = 0 mod Z, for k = 0, 3, 6, 9. (13)

The calculation of spectrum is not enough. We have to find out the chirality by

considering the right movers. Also, there can be some linear combinations of local-

ized fields whose multiplicities must be calculated. After all these considerations,

we obtain a complete massless spectrum. For the method, refer to 10,5,4. The SM

particles are listed in Table 1. Summarizing the standard charge partcles except

extra neutral singlets

U : Q(U1), L(U1), u
c(U3), d

c(U3), ν
c(U3), e

c(U3), Hu(U2), Hd(U2)

T 0
4 : 2{Q, L, uc, dc, νc, ec, D, D, Hu, Hd}, D, Hd

T6 : 3{D, D}, 2{Hu, Hd}

T3 : D, Hd, 3 · 10′

T9 : 2D, 2Hu

(14)

Note that we can assign the 3rd family in the U sector and the first and second

families in the T 0
4 sector. It has been shown that Yukawa couplings with appropriate

neutral singlets can make vectorlike pairs massive.

The study of exotic particles is very tricky, but in our model these are known to

be vectorlike and made massive by choosing appropriate VEVs of gauge singlets 4.

cNote added: Another exotics free model 13 also has the hypercharge invaded by the hidden sector.
At present, I do not know any exotics free SSM without the invasion of the electroweak hypercharge
by the hidden sector.
dFor 6 < n ≤ 11, they provide the CTP conjugates of those appearing in 1 ≤ n < 6 except in T3

and T9. T3 and T6 states can contain CTP conjugates also.
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Table 1. The SM particles.

Visible states SM notation Γ Γ′

(+ + −; +−; + + +)(08)′ Q(U1) –1 +1
(+ −−;−−; + + +)(08)′ dc(U3) –1 +1
(+ −−; ++;+ −−)(08)′ uc(U3) –1 −3
(−−−; +−; + −−)(08)′ L(U1) –1 −3
(+ + +;−−;− + −)(08)′ ec(U3) +5 +5
(+ + +;++;+ + +)(08)′ νc(U3) –1 +1

(0 0 0;−1 0;−1 0 0)(08)′ Hu(U2) +2 +2
(0 0 0; 1 0; 0 0 1)(08)′ Hd(U2) –4 −2

(+ + −; +−; 1

6

1

6

−1

6
)(08)′ 2 · Q(T 0

4
) +1 +1

(+ −−;−−; 1

6

1

6

−1

6
)(08)′ 2 · dc(T 0

4
) +1 +1

(+ −−; ++; 1

6

1

6

−1

6
)(08)′ 2 · uc(T 0

4
) −3 −3

(−−−; +−; 1

6

1

6

−1

6
)(08)′ 2 · L(T 0

4
) −3 −3

(+ + +;−−; 1

6

1

6

−1

6
)(08)′ 2 · ec(T 0

4
) +5 +5

(+ + +; ++; 1

6

1

6

−1

6
)(08)′ 2 · νc(T 0

4
) +1 +1

(1, 0, 0; 0 0; −1

3

−1

3

1

3
)(08)′ 3 · D1/3(T 0

4
) +2 +2

(−1, 0, 0; 0 0; −1

3

−1

3

1

3
)(08)′ 2 · D

−1/3(T 0
4
) −2 −2

(0, 0, 0;−1 0; −1

3

−1

3

1

3
)(08)′ 2 · Hu(T 0

4
) +2 +2

(0, 0, 0; 1 0; −1

3

−1

3

1

3
)(08)′ 3 · Hd(T 0

4
) –2 −2

(1, 0, 0; 0 0; 03)(−1

2

1

2
0; 05)′ 3 · D1/3(T6) +2 +2

(−1, 0, 0; 0 0; 03)( 1

2

−1

2
0; 05)′ 3 · D

−1/3(T6) −2 −2

(0, 0, 0;−1 0; 03)(−1

2

1

2
0; 05)′ 2 · Hu(T6) +2 +2

(0, 0, 0; 1 0; 03)( 1

2

−1

2
0; 05)′ 2 · Hd(T6) −2 −2

( 3

4

−1

4

−1

4
; −1

4

−1

4
; 1

4

1

4

1

4
)( 3

4

1

4
0; 05)′ D1/3(T3) 1 +2

(−3

4

1

4

1

4
; 1

4

1

4
; −1

4

−1

4

−1

4
)(−3

4

−1

4
0; 05)′ 2 · D

−1/3(T9) −1 −2

( 1

4

1

4

1

4
; −3

4

1

4
; −1

4

−1

4

−1

4
)( 1

4

3

4
0; 05)′ 2 · Hu(T9) +4 +3

(−1

4

−1

4

−1

4
; 3

4

−1

4
; 1

4

1

4

1

4
)(−1

4

−3

4
0; 05)′ Hd(T3) −4 −3

There exist eight U(1) gauge symmetries whose charges are denoted as

Y = (1
3

1
3

1
3

−1
2

−1
2

03)(08)′ (15)

B − L = (2
3

2
3

2
3

0 0 03)(08)′ (16)

Q1 = (05 2 0 0)(08)′ (17)

Q2 = (05 0 2 0)(08)′ (18)

Q3 = (05 0 0 2)(08)′ (19)

Q4 = (08)(2 0 0 05)′

Q5 = (08)(0 2 0 05)′

Q6 = (08)(0 0 2 05)′ (20)

One linear combination of the above charges is the U(1)X charge of the flipped

SU(5),

X = (2 2 2 2 2 0 0 0)(08)′ (21)

There exists an anomalous U(1)anom with

Qanom = Q1 + Q2 + Q3 + Q4 − Q5 + 6X. (22)
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Toward embedding a Z2 matter parity P in an anomaly free U(1), we choose U(1)Γ
where

Γ = X + 1
4
(Q4 + Q5) − (Q2 + Q3) + 6(B − L). (23)

4. Phenomenology

Except the gauge interactions, phenomenology results from Yukawa couplings in-

cluding the nonrenormalizable terms. The Yukawa coupling structure respects

• Gauge symmetries,

• Lorentz symmetry, in particular from the internal coordinates the H-

momentum conservation,

• The modular invariance conditions for the T
mf

k sector
∑

z

k(z) = 0 mod 12 (24)

∑

z

[kmf ](z) = 0 mod 3 (25)

• The modular invariance requires the sum of H-momenta being (−1, 1, 1)

mod (12, 3, 12).e

For Z12−I , the H-momenta are given by

U1 : (−1, 0, 0), U2 : (0, 1, 0), U3 : (0, 0, 1),

T1 : (−7
12

, 4
12

, 1
12

), T2 : (−1
6

, 4
6
, 1

6
), T3 : (−3

4
, 0, 1

4
),

T4 : (−1
3

, 1
3
, 1

3
),

{
T5 : ( 1

12
, −4

12
, −7

12
)
}

, T6 : (−1
2

, 0, 1
2
), (26)

T7 : (−1
12

, 4
12

, 7
12

), T9 : (−1
4

, 0, 3
4
).

For example, T2T4T6 has the H-momentum (–1, 1, 1); thus the coupling is al-

lowed if the other conditions are satisfied. The 3rd family quark masses arise from

Q(U1)u
c(U3)Hu(U2) and Q(U1)d

c(U3)Hd(U2) which are cubic. But we need much

more couplings to make this model phenomenologically successful. Since there are

O(100) chiral fields, a computer search may be necessary. We have shown 4 that

if neutral singlets are allowed to get GUT scale VEVs then all the needed phe-

nomenology can be met, in particular vectorlike exotics and non-exotic vectorlike

pairs obtain large masses. Also, supersymmetric conditions the F -flatness and D-

flatness have to be checked in a specific model for given singlet VEVs 4. But the

R-parity needs a special treatment on which we will comment shortly.

Before discussing the R-parity, we point out that now it is possible to study

an approximate global symmetry. In fact, in the Z12−I flipped SU(5) model 5, we

studied an approximate Peccei-Quinn symmetry 8. We studied U(1)anom×U(1)global

where U(1)global is an approximate one. We find that the QCD axion is possible and

eAn extensive discussion is given in 10.
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(eV)axionm
10

−5
10

−4
10

−3
10

−2
10

−1
1 10

)
−1

(G
eV

γa
g

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

.

globular cluster

SOLAX, COSME

Lazarus et al

Tokyo Helioscope

CAST 2003

CAST prospects

DAMA

Prediction of
Kim−Kyae model

Fig. 5. The CAST 2003 data compared to the Z12 model given by the thick line. The band is
the 20 % theoretical error of Ref. [15].

obtained the axion-photon-photon coupling for the first time from string compact-

ification,

caγγ = caγγ − 1.93 ≃ −0.26 (27)

where –1.93 appears from the QCD chiral symmetry breaking. However, the decay

constant turns out to be at the GUT scale and hence it is very difficult to observe the

very light axion from the cavity experiments even though we invoke the anthropic

principle for the misalignment problem. In Fig. 5, the above axion-photon-photon

coupling strength is compared to the recent solar axion search from CAST 15.

This kind of study on approximate symmetries can be done in a specific model.

In particular, the R-parity must be studied in a specific model as performed in the

flipped SU(5) 9. A probable failure in obtaining an R-parity is that one needs many

singlet VEVs for other phenomenological reasons.



June 23, 2007 9:50 WSPC/INSTRUCTION FILE Cairo

10 J. E. Kim

5. Effective R-parity

The approximate R-parity in Ref. [8] was obtained by studying Yukawa couplings

up to dimension 7. But a better way is to embed the R-parity or matter parityf

in an anomaly free U(1) gauge group. A parity is a Z2 operation. Some VEVs of

the U(1) charge carrying fields can break U(1) down to ZN if the field carries N

units of the fundamental U(1) charge. If we normalize the smallest nonvanishing

U(1) charge as ±1, then a VEV of U(1) charge N field breaks U(1)→ ZN . So if

only even integer U(1) charge fields, including Q = 2, are given VEVs then the

final discrete group is Z2, and we succeed in obtaining a matter parity. However,

if some phenomenological reasons dictate some Q = ±1 fields develop GUT scale

VEVs, we do not obtain such a matter parity. In this case, we can resort only to an

approximate matter parity.

In the E8 group space, the weights are divided into two classes, the vector type

V and the spinor type S. In the U sector, the vector type has the form of P such as

P = (±1 0 0 ± 1 0 0 0), (28)

while the spinor type has the form of P such as

P = (± 1
2

± 1
2

± 1
2

± 1
2

± 1
2

± 1
2

± 1
2

± 1
2
). (29)

Below we will represent ± 1
2

simply as ±. In the T sector, P + kV0,± are considered

to see whether some components are of the vector type or of the spinor type. If we

pick up the U(1)X charge of the flipped SU(5)

X = (2 2 2 2 2 0 0 0)(08)′, (30)

the vector type weight (28) has an even number for X eigenvalue while the spinor

type weight (29) has an odd number for X eigenvalue. This results because we have

an odd number of entries of 2 in Eq. (30). So this U(1)X can be a good mother

for the matter parity. If we consider three entries of 2, it is three times U(1)B−L of

Eq. (16) which can be another good mother group for the matter parity. Q1, Q2,

and Q3 can do the same job. Out of these five, only four U(1)s are considered to be

independent.

Note that all SM particles of Table 1 are of S type and some needed Higgs

doublets are of V type. So if all the needed VEVs of gauge singlets are of V type,

then we achieve introducing an exact matter parity in that model. However, if

some S singlet(s) is required to have a GUT scale VEV(s), then the matter parity

introduced is not exact. The charge of the hypothetical mother U(1)Γ group is given

in Eq. (23) which has an odd number of 2 entries.

In Table 2, we list gauge singlets with U(1)Γ charges. Here in the Γ column,

singlets having odd Γ charges are boxed. We have to check whether phenomenology

fStrictly speaking, we work with the matter parity since gauginos are not considered, but this
matter parity can be properly extended to become an R-parity. So we use both words without
distinction.
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Table 2. Left-handed electromagnetically neutral SO(10)′ singlets. There is only one untwisted sector
singlet S0. To have a definition of parity, S15, S16, S18, S20, and S23 should not develop VEVs.

Visible states SM notation B − L X Γ Γ′ Label
(0 0 0; 0 0; 1 0 − 1)(08)′ 10(U2) 0 0 +2 0 S0

(05; −2

3

−2

3

−1

3
)( 1

2

−1

2
0; 05)′ 10(T 0

2
) 0 0 +2 0 S1

(05; −2

3

1

3

2

3
)(−1

2

1

2
0; 05)′ 10(T 0

2
) 0 0 −2 0 S2

(05; 1

3

−2

3

2

3
)(−1

2

1

2
0; 05)′ 10(T 0

2
) 0 0 0 0 S3

(05; 1

3

1

3

−1

3
)( 1

2

−1

2
0; 05)′ 2 · 10(T 0

2
) 0 0 0 0 S4

(05; 1

3

1

3

−1

3
)(−1

2

1

2
0; 05)′ 2 · 10(T 0

2
) 0 0 0 0 S5

(05; 2

3

2

3

−2

3
)(08)′ 2 · 10(T 0

4
) 0 0 0 0 S6
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needs definitely one of these to develop a large VEV or not. If we can choose a

vacuum where it is not necessary for any of these to develop a large VEV, then we

can introduce an exact matter parity.

But to make all exotics heavy, we need 〈S15〉 6= 0 and 〈S23〉 6= 0. So an exact

R-parity is not introduced in the model. However, we note that even if we obtained

an exact R-parity, proton still decays by dimension-5 operators

QQQL, ucucdcec.

So an exact R-parity conservation requirement can be considered as an over-

requirement with respect to the proton longevity problem. An approximate R-parity

with proton lifetime comparable to that coming from dimension-5 operators is a

good enough parity. However, if one requires an absolutely stable lightest SUSY
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particle (LSP), the exact R-parity might be a good requirement. However, here also

the LSP with its lifetime much larger than the age of universe can be considered as

a good dark matter candidate.

The dimension-4 operator ucdcdc is particularly problematic if there exists a tree

level lepton number violating operator also. In our model, ucdcdc carries Γ = −3, so

to have a dimension-4 ucdcdc coupling we need composite singlets carrying Γ = 3:
∏

i Si

ucdcdc

︸ ︷︷ ︸

Γ=−3

〈
∏

i

Si

︸ ︷︷ ︸

Γ=+3

〉 (31)

To obtain Γ = +3 from
∏

i Si, we need for example S0S0S15 where S0 is a U2 field

and S15 is a T 0
1 field. Other singlets having nonvanishing VEVs must belong to

S1 − S13. We can check that with these combinations we cannot satisfy the mod-

ular invariance condition
∑

twists = 0 mod 12. This implies that in the vacuum

we choose the coupling ucdcdc does not appear at all. However, the matter par-

ity or the R-parity is broken by heavy intermediate states, which is nothing but

those appearing in GUT models. So we estimate that the lightest neutralino life-

time is around 1022 years through R-parity violating interactions, considering heavy

particles, which is long enough to be considered as a dark matter candidate.

6. Conclusion

We reviewed very briefly the orbifold compactification. As a definite acceptable

example, we constructed a Z12−I orbifold model with the SM gauge group and

three families in which we achieve

• All exotics are removed by singlet VEVs,

• The 3rd family appears in the U sector,

• The weak mixing angle is sin2 θW = 3
8
, and

• An effective R-parity without ucdcdc coupling can be introduced. Still the

neutralino can be a dark matter candidate.

In another vacuum, we can align the hypercharge so that no exotics appear but in

this case the weak mixing angle is sin2 θW = 3
14

.
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