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The impact of the brane cosmology on the relic density of non-relativistic stable particles
in high and low reheating temperature scenarios is analyzed. We show that, in non-
conventional brane cosmology, the dark matter relic density can be enhanced by many
order of magnitudes.

1. Introduction

The existence of non-baryonic dark matter (DM) is one of firmed observational
evidences of new physics beyond the Standard Model (SM). The most interesting
candidate for this dark matter is a long lived or stable weakly interacting massive
particle (WIMP) which can remain from the earliest moments of the universe in
sufficient number to account for the dark matter relic density.

The standard computation of the WIMP relic density, based on the usual early
universe assumptions, leads to the following fact: The WIMP relic density is in-
versely proportional with its annihilation cross section. However, the detection
rate of this particle, which is given in terms of its elastic cross section with the
nuclei in the detector, is proportional to its annihilation cross section. There-
fore, in order to detect the WIMP experimentally, its cross section should be
large, of O(10−6 − 10−8)GeV−2. Nevertheless, in this case the WIMP relic den-
sity is quite small: Ωχh2 ≤ 0.01 which contradicts the recent observational bounds:
0.094 ≤ Ωχh2 ≤ 0.128 1.

In the last few years there has been a growing interest in studying the impact
of non-conventional brane cosmology on the relic abundance of dark matter 2,3,4.
Warped extra dimensions have been proposed 5 to explain the large hierarchy be-
tween the electroweak scale (MW ∼ 102 GeV) and the Planck scale (Mpl ∼ 1019

GeV). In this class of models, the ordinary matter is assumed to be localized on
a three-dimensional subspace, called brane which is embedded in a larger space,
called bulk. It has been emphasized that the brane cosmology in these models can
be quite different from the standard cosmology of four dimensional universe. In
particular, the derived Friedman equation of a brane embedded in five dimensional
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(5D) warped geometry is given by 6

H2 =
8πG(4)

3
ρ

(
1 +

ρ

2σ

)
− k

a2
+
C
a4

, (1)

where H = ȧ/a is the Hubble parameter and a(t) is the scale factor, ρ is the energy
density of ordinary matter on the brane while σ is the brane tension. G(4) refers to
the 4D Newton coupling constant. Finally k stands for the curvature of our three
spatial dimensional and C is a constant of integration known as dark-radiation. As
can be seen from the above equation, H ∝ ρ rather than

√
ρ as in the conventional

cosmology. Thus, the evolution of the scale factor will be different from the standard
one. This modification would be very relevant for the cosmological events, as dark
matter relic abundance, that may occur during the radiation dominated phase of
the early universe.

The aim of this article is to provide a detail analysis for the relic density in the
context of non-conventional brane cosmology.

2. Warped geometry and brane cosmology

The warped extra dimensions scenario has been proposed by Randall and
Sundrum(RS)5. In this model, an extra dimension compactified on a S1/Z2 orb-
ifold, with two branes sitting on each orbifold fixed point, is assumed. The brane at
y = 0 is called the Planck brane, while the other one at y = πrc is called the TeV or
SM brane. With an appropriate tuning for cosmological constants in the bulk and
on the branes, we obtain the warped metric

ds2 = e−2κ|y|ηµνdxµdxν − dy2 (2)

where ηµν = diag(1,−1,−1,−1) is the usual Minkowski metric. This type of geome-
try is called ’non-factorizable’ because the metric of the 4D subspace is y-dependent.
In the simplest version of the RS model it is assumed that the SM fields live on
the so-called TeV brane while gravity lives everywhere. A basic assumption of this
model is that there are no large mass hierarchies present so that very roughly we
expect that k∼M∗ the 5D fundamental or Planck scale. In fact, once we solve Ein-
stein’s equations and plug the solutions back into the original action and integrate
over y we find that

M2
pl =

M3
∗

k
(1− e−2πkrc) (3)

The warp factor e−2πkrc is a very small quantity which implies that Mpl, M∗
and k have essentially comparable magnitudes following from the assumption that
no hierarchies exist. If we calculate the Ricci curvature invariant for this 5D space
we find it is a constant, i.e.,R5 = −20k2 and thus k is a measure of the constant
curvature of this space. A space with constant negative curvature is called an Anti-
DeSitter space Ads5.
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We consider the most general metric that preserves three dimensional rotational
and translation invariance:

ds2 = −n2(t, y)dt2 + a2(t, y)γijdxidxj + b2(t, y)dy2, (4)

where γij is a maximally symmetric 3-dimensional metric with spatial curvature
k = ±1, 0. In our analysis, we identify the hypersurface defined by y = 0 with the
brane that forms our universe. The induced metric in this brane is the usual 4D

RW metric.
The five-dimensional Einstein equations (with bulk cosmological constant Λ) are

given by

R̃AB − 1
2

(
R̃− 2Λ

)
g̃AB = κ2

(5)T̃AB , (5)

where R̃AB is the 5D Ricci tensor, R̃ is the 5D scalar curvature and the constant
κ(5) is related to the 5D Newton’s constant G(5) and the 5D Plank mass M(5), by
the relations

κ2
(5) = 8πG(5) = M−3

(5) . (6)

Assuming an empty bulk, the energy momentum tensor is due to the matter on the
brane, which is considered to be an infinitely thin. Thus T B

A is given by

T B
A =

δ(y)
b

diag (−ρb, pb, pb,pb, 0) , (7)

where ρb and pb are the total energy density and pressure on the brane, respectively.
In order to have a well defined geometry, the metric (i.e., the function f ≡ n, a, b

in Eq.(4) must be continuous across the brane localized at y = 0 but its derivative
with respect to y can be discontinuous. Therefore, its second derivative with respect
to y will contain Dirac delta function, i.e.,

f
′′

= f̂ ′′ + [f
′
]δ(y), (8)

where f̂ ′′ is the non-distributional part of the second derivative of f respect to y

and [f
′
] is the jump in the first derivative of f across y = 0 which is defined as

[f
′
] = f

′
(0+)− f

′
(0−). (9)

By matching the Dirac δ(y) function in Eq.(5), one obtains the following relations,
which are known as junction conditions 6:

[a
′
]

a0b0
= −

κ2
(5)ρb

3
, (10)

[n
′
]

n0b0
=

κ2
(5)(2ρb + 3pb)

3
, (11)

where the subscript 0 stands for the evaluation at y = 0. Using the condition Eq.(??)
with the components (0, 0) and (4, 4) of Einstein’s equations in the bulk, one finds
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the following equation

H2 ≡ ȧ2
0

a2
0

=
Λ
6

+
κ4

(5)

36
ρ2

b −
k

a2
+
C
a4

, (12)

where C is a constant of integration. As can be seen from this equation, the Hubble
parameter is proportional to the energy density of the brane, in contrast with the
standard four-dimensional Friedmann equation where it depends on the square root
of the energy density. Let us consider a brane with total energy density

ρb = σ + ρ, (13)

where σ is a brane tension, constant in time, and ρ is the energy density of ordinary
cosmological matter. This implies

H2 =

(
κ4

(5)σ
2

36
+

Λ
6

)
+

κ4
(5)

18
σρ +

κ4
(5)

36
ρ2 − k

a2
+
C
a4

. (14)

Then with fine tuning of brane tension, the first term in Eq.(14) vanishes if we have

κ4
(5)

36
σ2 = −Λ

6
. (15)

Furthermore, fixing the value of Λ in terms of M(5) and Mpl as Λ = −6M6
(5)/M

4
pl,

one finds

8πG(4) =
κ4

(5)

6
σ, (16)

which leads to the new Friedmann equation:

H2 =
8πG(4)

3
ρ

(
1 +

ρ

2σ

)
− k

a2
+
C
a4

. (17)

As can be seen from Eq.(17), at low energies i.e., at late time, the cosmology
can be reduced to the standard one, but in the early time the ρ2 term becomes
dominant, so the universe undergoes nonconventional cosmology.

3. Relic density of dark matter in brane world cosmology

In this section we compute the relic density of the WIMP (χ) within the non-
conventional brane cosmology. In the standard computation for the WIMP relic
density, one assumes that χ was in thermal equilibrium with the standard model
particles in the early universe and decoupled when it was non-relativistic. Once
the χ annihilation rate Γχ = 〈σann

χ v〉nχ dropped below the expansion rate of
the universe, Γχ ≤ H, the WIMPs stop to annihilate, fall out of equilibrium and
their relic density remains intact till now . The above 〈σann

χ v〉 refers to thermally
averaged total cross section for annihilation of χχ into lighter particles times the
relative velocity, v.
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The relic density is then determined by the Boltzmann equation for the WIMP
number density (nχ) and the law of entropy conservation:

dnχ

dt
= −3Hnχ − 〈σann

χ v〉 [(nχ)2 − (neq
χ )2

]
, (18)

ds

dt
= −3Hs, (19)

where neq
χ is the WIMP equilibrium number density which, as function of temper-

ature T , is given by neq
χ = gχ(mχT/2π)3/2e−mχ/T . Here mχ and gχ are the mass

and the number of degrees of freedom of the WIMP respectively. Finally, s is the
entropy density. In the standard cosmology, the Hubble parameter H is given by
H2 =

(
8π/3M2

pl

)
ρ to be compared with the expression in Eq.(17) for brane cos-

mology. In our analysis we will set k = C = 0 in order to focus on the impact of the
modification of the ρ dependence in H.

Let us introduce the variable x = mχ/T and define Y = nχ/s with Yeq = neq
χ /s.

In this case, the Boltzmann equation is given by

dY

dx
=

1
3H

ds

dx
〈σann

χ v〉 (Y 2 − Y 2
eq

)
. (20)

In radiation domination era, the entropy, as function of the temperature, is given by
s = 2π2

45 g∗s(x) m3
χ x−3 ≡ k1x

−3, which is deduced from the fact that s = (ρ + p)/T

and g∗s is the effective degrees of freedom for the entropy density. Therefore one
finds

ds

dx
= −3s

x
, (21)

which is the same in both cases of standard and brane cosmology. In the standard
case, the following expression for the Boltzmann equation for the WIMP number
density is obtained

dY

dx
= − s

Hx
〈σann

χ v〉 (Y 2 − Y 2
eq

)
, (22)

where H(x) is given by H =
√

4π3g∗m4
χ

45M2
pl

x−2 =
√

k2x
−2 and g∗ is the effective degrees

of freedom for the energy density. Therefore, one obtains the following expression
for the Boltzmann equation for the WIMP number density (g∗s ' g∗ is assumed):

(
dY

dx

)

s

= −
√

πg∗
45

Mpl mχ

〈σann
χ v〉
x2

(
Y 2 − Y 2

eq

)
. (23)

In brane cosmology the Hubble parameter is given by H = (k2x
−4 + k3x

−8)1/2

where k3 = π4g2
∗m

8
χ/(32400M6

5 ). Thus, the Boltzmann equation in brane cosmology
takes the form

(
dY

dx

)

b

= −
√

πg∗
45

Mpl mχ

(
x4 +

k3

k2

)−1/2

〈σann
χ v〉 (Y 2 − Y 2

eq

)
. (24)
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It is worth noticing that in the limit of k3 → 0 (i.e., σ → ∞), the above equa-
tion tends to the standard Boltzmann equation in Eq.(23). Therefore, at early times,
the universe undergoes a nonstandard brane cosmology till it reaches a tempera-
ture, known as transition temperature Tt where the universe sustains the standard
cosmology. This transition temperature is defined as [4]

ρ(Tt) = 2σ ⇒ Tt = 0.51× 10−9M
3
2
5 GeV. (25)

In order to analyze the brane cosmology effect on the WIMP relic density, one
should assume that the freeze out temperature of the WIMP (TF ) is higher than
the transition temperature, i.e., TF ≥ Tt. Therefore, one finds

M5 ≤ 1.57× 106

(
mχ

xF

)2/3

. (26)

Since the WIMPs freeze out at temperature TF ¿ mχ, they are non-relativistic and
therefore the averaged annihilation cross section can be expanded as follows:

〈σann
χ v〉 = a +

6b

x
, (27)

where a describes the s-wave annihilation and b comes from both s- and p- wave
annihilation. To obtain the present WIMP abundance Y∞, we should integrate
the Boltzmann equation for the WIMP number density from xF (the decoupling
temperature) to x∞ ' ∞ (present temperature). It is important to notice that this
integral must be divided to two parts from xF to xt where the non-conventional
brane cosmology is applied and from xt to ∞ where the universe undergoes the
standard cosmology. Thus, one obtains

Y −1
∞b =

√
πg∗
45

Mplmχ

[∫ xt

xF

(a +
6b

x
)
(

k3

k2
+ x4

)−1/2

dx +
∫ ∞

xt

(
a

x2
+

6b

x3

)
dx

]
.

(28)
Here we have used the usual assumption that Yeq ¿ Y and YxF

À Y∞. Evaluating
the above integrals, one finds

Y −1
∞b =

√
πg∗
45

Mpl mχ

[
3
√

k2

k3
b

(
sinh−1

(√
k3

k2
x−2

F

)
− sinh−1

(√
k3

k2
x−2

t

))

+ a

(
1
x

2F1

[
1
4
,
1
2
,
5
4
,
−k3

k2x4

])xt

xF

+
(

a

xt
+

3b

x2
t

)]
, (29)

where 2F1[a, b, c, z] is the Hypergeometric function, which is a solution of the hy-
pergeometric differential equation: z(1 − z)y

′′
+ [c − (a + b + 1)z]y

′ − aby = 0. As
can be seen from Eq.(29) that for xt = xF the expression of Y −1

∞b coincides with

the standard known result for Y −1
∞ s, namely Y −1

∞s =
√

πg∗
45 Mpl mχ

(
a

xF
+ 3b

x2
F

)
. The

relic abundance of the WIMP is given by

Ωχh2 =
ρχ

ρc/h2
= 2.9× 108 Y∞

( mχ

GeV

)
, (30)
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where the critical density ρc is given by ρc ' 10−5h2 GeVcm−3 and h is the Hub-
ble constant, h ' 0.7. Furthermore, the ρχ is defined as ρχ = mχs0Y∞ where
s0 ' 2900 cm−3 is the present entropy density. As in the standard scenario, the
relic density of the WIMP is inversely proportional to its annihilation cross sec-
tion. However, unlike the standard case, it depends explicitly on WIMP mass since
k3/k2 ∝ m4

χ. In standard cosmology xF is given by

xF = ln
0.0765 c mχMplgχ(a + 6b/xF )√

xF g∗(xF )
, (31)

which can be solved iteratively to determine the value of xF . It turns out that for
mχ ∼ O(100) GeV, xF ∼ O(25). In brane cosmology, one can easily show that xF

is obtained by iterative solution of

xF = ln
0.0765 c mχMplgχx

3/2
F (a + 6b/xF )√

g∗(xF )(k3
k2

+ x4
F )

. (32)

In this case, one finds that xF is smaller than the above value obtained within
the standard cosmology. Also, it turns out that xF is sensitive to the scale M5.
For example with M5 ∼ 106 one gets xF ∼ O(7). Let us introduce the factor
R = (Ωχh2)b/(Ωχh2)s that measures the enhancement/suppression in the relic
abundance due to the brane cosmology. From Eq.(30), one finds

R =
a

xF
+ 3b

x2
F

3
√

k2
k3

b
(
sinh−1

(√
k3
k2

x−2
F

)
− sinh−1

(√
k3
k2

x−2
t

))
+ a

(
1
x 2F1

[
1
4 , 1

2 , 5
4 , −k3

k2x4

])xt

xF

+ a
xt

+ 3b
x2

t

.

(33)
This expression is different from that obtained by Okada and Seto [4], which is

R = (Ωχh2)b/(Ωχh2)s ' 0.54(xt/xd(s)) (34)

The reason is that in doing the integration to get Y∞b, we divide the integration into
two parts, from xF to xt where the non-conventional brane cosmology is applied
and from xt to ∞ where the universe undergoes the standard cosmology, where as
for Okada and Seto, they have done the integration in one step. This factor could
be larger or smaller than one depending on the values of the annihilation cross
section parameters a and b and also on the masses mχ and M5. In order to analyze
the impact of the non-conventional brane cosmology on the relic density result, we
consider, as an example, the lightest supersymmetric particle (LSP), which is one
of the most interesting candidates for the WIMP. As is well known, in most of
the parameter space of the supersymmetric models the LSP is mainly pure Bino.
Therefore, it is mainly annihilated into lepton pairs through t−channel exchange of
right-handed sleptons. The p-wave dominant cross section is given by [7]

b ' 8πα2
1

1
m2

χ

1
(1 + xl̃R

)2
, (35)
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where xl̃R
= m2

l̃R
/m2

χ and α1 is the coupling constant for the U(1)Y interaction.

Thus, for mχ ∼ ml̃R
∼ 100 GeV, one finds b ' O(10−8) GeV−2, which in the

standard cosmology scenario leads to Ωχh2 ≥ 0.1.
As advocated above, in brane cosmology the relic density (Ωχh2)b is quite sensi-

tive to the value of the fundamental scale M5 which should satisfy the upper bound
given in Eq.(26). Therefore, with mχ ' O(100) GeV and xF ' O(10), one finds

M5 < 107. (36)

Furthermore, the fact that the transition process from non-conventional cosmology
to convention cosmology should take place above the nucleosynthesis era (i.e., Tt > 1
MeV) impose the following lower bound on M5:

M5 ≥ 1.2× 104. (37)

In this case the resulting relic density (Ωχh2)b may exceed the WMAP results (at
95% confidence level) [1]

Ωχh2 = 0.1126+0.0161
−0.0181. (38)

Moreover for M5 ≥ 5× 106, the ratio R becomes less than one and a small suppres-
sion for (Ωχh2)s can be obtained. This brane enhancement or suppression for the
dark matter relic density could be favored or disfavored based on the value of the
relic abundance in the standard scenario. If (Ωχh2)s is already larger than the ob-
servational limit, as in the case of bino-like particle, then a suppression effect would
be favored and hence M5 is constrained to be larger than 5 × 106 GeV. However,
for wino- or Higgsino-like particle where the standard computation usually leads to
very small relic density, the enhancement effect will be favored and the constraint
on M5 can be relaxed a bit [4]. In general, it is remarkable that in this scenario the
dark matter relic density imposes a stringent constraint on the fundamental scale
M5.

4. Low reheating and DM relic abundance in brane cosmology

In the standard computation for the DM relic density that we have adopted in
the previous section, it was assumed that the reheating temperature TRH is much
higher than the WIMP freeze-out temperature i.e., TRH À TF . In this case, the
reheating epoch has no impact on the final result of the relic density. However, it is
well known that the only constraint on TRH is TRH >∼ 1 MeV in order not to spoil
the successful predictions of the big bang neucleosynthesis. Therefore, in principle it
is possible to have a cosmological scenario with low reheating such that TRH < TF .
In this case the predictions of the relic abundance of the WIMP are modified as
emphasized in [7] and recently in [8]. As in the previous section and to emphasize the
effect of the brane cosmology, we assume that the WIMP freeze-out temperature
is larger than the transition temperature which is also larger than the reheating
temperature, i.e., TF > Tt > TRH . Within a low reheating temperature scenario,
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the relic density depends on whether WIMPs are never in chemical equilibrium
either before or after reheating or they reach chemical equilibrium but they freeze-
out before the completion of the reheat process. The resultant relic density in these
two scenarios are quite different and are also different from the one derived by the
standard computation with a large reheating temperature.

Let us start our analysis with the case of non-equilibrium production and freeze-
out. In this case, at early times the number density nχ is much smaller than neq

χ

and the Boltzmann equation (22) can be written as

dY

dx
= 0.02095

(
gχ

g∗s

)2
s

Hx
〈σann

χ v〉 x3 e−2x. (39)

Although this equation is valid only at early times, it can be approximately inte-
grated in the full range of x, namely from x = 0 to x = ∞ due to the exponen-
tial suppression in the right hand side. Thus for the standard cosmology (where
H ∝ x−2), one can easily integrate this equation and obtains

Y∞s = 0.02095
√

π

45
g2

χg
−3/2
∗ Mpl mχ

(a

4
+ 3b

)
. (40)

The Y∞ is related to the mass density of χ particle today as follows, at reheating we
have ρχ(TRH) = mχnχ(TRH) = 2π2

45 g∗s(TRH)mχY∞T 3
RH . After the reheating the

universe is radiation dominated and the following relation is satisfied [7]:

ρχ(Tnow)
ρR(Tnow)

=
TRH

Tnow

ρχ(TRH)
ρR(TRH)

. (41)

Therefore, in this case Ωχh2 is proportional to the annihilation cross section
instead of being inversely proportional as in case of high reheating temperature.

Now we consider this scenario of low reheating with non-equilibrium production
and freeze-out in brane cosmology. The Boltzmann equation is still given by Eq.(39),
but with H = (k2x

−4 + k3x
−8)1/2 in the range of x ∈ [0, xt] and with the usual

Hubble parameter H =
√

k2x
−2 between xt and x = ∞. Integrating this equation

one finds

Y∞b ' 0.02095× 10−6

√
π

45
g2

χg
−3/2
∗ Mpl mχ (9.46 a + 37.8 b) . (42)

Here we have used mχ ∼ 100 GeV and M5 ∼ 106 GeV, as an example, to do the
integration numerically. However, we have checked the result of Y∞b for different
values of mχ and M5. It turns out that Y∞b is diminished significantly for M5 <∼ 106.
As can be observed from equations (40) and (42) that this non-equilibrium scenario
produces a very suppressed relic density, particularly in brane cosmology. Further-
more, the assumption that nχ ¿ neq

χ impose a sever constraint on the annihilation
cross section. Thus, one can conclude that within this scenario, it is not possible to
account for the dark matter experimental results.

Now we turn to the second scenario in which the annihilation cross section of
the WIMP is large and hence it reaches the chemical equilibrium before reheating.
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In this case, the computation of the relic density Ωχh2 is very close to the standard
case with high reheating temperature. At the early times i.e., when T > TF , the
WIMP’s are very close to equilibrium. So, as usual, one can use the variable ∆(x) =
Y (x)− Y eq(x) to write the Boltzmann equation as

∆′ = −(Y eq)
′ − f(x)∆ (2Y eq + ∆) , (43)

where f(x) is given by f(x) =
√

πg∗
45 Mplmχ

[
a
x2 + 6b

x3

]
. Then by neglecting ∆′ and

∆2 , one obtains

∆ ' − (Y eq)
′

2f(x)Y eq
. (44)

At late time, when T < TF one gets Y À Y eq and hence we can use the
approximation Y 2 − (Y eq)2 ' Y 2 in Eq.(23) and integrate from TF down to TRH

to determine Y (TRH). In the standard cosmology, one finds

1
Y (xRH)

∣∣∣
s

=
1

Y (xF )
−

√
πg∗
45

Mplmχ

[
a

x
+

3b

x2

]xRH

xF

, (45)

If it is assumed that there is no entropy production for T < TRH , then there is
no WIMP production for temperature below the reheating temperature. Thus, the
present value of Y is given by Y (xRH) up to an overall correction due to the fact
that the reheating process is not complete at TRH [7]. Here, two comments are in
order: i) As mentioned above, Y (xF )−1 ' Yeq(xF )−1 which is of order O(109), so
its contribution to Y (xRH)−1 in Eq.(45) can be neglected respected to the second
term. ii) Since TRH < TF (i.e., xRH > xF ), one can approximate Eq.(45) and
finds that the relic abundance Ωχh2 is very close to the one obtained by using the
standard calculation with high reheating temperature, namely

Ωχh2 ∼ 1.1× 10−11

(
a

xF
+

3b

x2
F

)−1

, (46)

which implies that unless annihilation cross sections are quite small ( <∼ 10−8), one
gets, as usual, very small relic density.

In brane cosmology, Eq.(24) describes the correct Boltzmann equation that
should be used. Also, as in the previous scenario, one has to integrate this equa-
tion from xF to xt using brane cosmology feature, and from xt to xRH using the
standard cosmology feature. In this respect, one finds

1
Y (xRH)

∣∣∣
b

=
1

Y (xF )
−

√
πg∗
45

Mplmχ

[
3
√

k2

k3
b

(
sinh−1

(√
k3

k2
x−2

F

)
− sinh−1

(√
k3

k2
x−2

t

))

+ a

(
1
x

2F1

[
1
4
,
1
2
,
5
4
,
−k3

k2x4

])xt

xF

+
(

a

x
+

3b

x2

)xRH

xt

]
. (47)

One can easily check that the three parts of the second term in the above equation
are of the same order and give the dominant contribution to Y (xRH)−1. In this
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case, one can show that the relic density (for mχ = 100 GeV and M5 = 106 GeV)
is given by

Ωχh2 ∼ 1.1× 10−7 (95.2 a− 4.12 b)−1
. (48)

From this equation it can be easily seen that even with large annihilation cross
section O(10−6 − 10−8), we are able to obtain the cosmologically interesting value
Ωχh2 ∼ 0.1. This implies that the scenario of brane cosmology with low reheating
termperature and chemical equilibrium WIMPs is the most interesting model for
dark matter. It provide an interesting possibility for having dark matter with large
cross section (hence their detection would be possible in future DM experiments)
with suitable relic aboundanc.

5. Conclusions

In this article we review the analysis of the relic abundance of cold dark matter in
brane cosmology. We have studied the impact of brane cosmology on the cold dark
matter relic density. We investigated this effect in two different scenarios, namely
when the reheating temperature is higher or lower than the freeze-out temperature.
We showed that with high reheating temperature, the relic density is enhanced
with many order of magnitude forM5 ≤ 106. This imposes one of the strongest
constraints on the scale of large extra dimensions. In case of low reheating temper-
ature, we have considered the possibility that WIMPs are in chemical equilibrium
or non-equilibrium, which depends on the value of their annihilation cross section.
We emphasized that if WIMPs are in chemical non-equilibrium, then their relic
density is very small and they can not account for the observational limits. While
in case WIMPs reach chemical equilibrium before reheating, we showed that the
relic density is enhanced by two order of magnitudes than the standard thermal
scenario result. This enhancement can be considered as an interesting possibility
for accommodating dark matter with large cross section, which is favored by the
detection rate experiments.
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