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Why Extra Dimensions

I General Relativity: why 4 dimensions?

I Possible existence of new spatial dimensions beyond the four we see have been under consideration for

about eighty years already.

I The first ideas date back to the early works of Kaluza and Klein around the 1920?s, who tried to unify

electromagnetism with Einstein gravity.

I Extra dimensions aim to unify the fundamental forces of the universe.

I Extra dimensions are fundamental ingredient for String Theory, since all versions of the theory are naturally

and consistently formulated only in a space-time of more than four dimensions (actually 10, or 11 if there

is M-theory).

I Extra dimensions offer a potential solution to the hierarchy problem.

I Extra dimensions can potentially explain cosmological inflation and the nature of dark matter and dark

energy.
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General relativity in 5D spacetime

I One of the first attempts to formulate a unified field theory. Introduced by Theodor Kaluza in 1921.

I The five dimensional line element is given by

dŝ2 = gMNdx
MdxN

I The five dimensional metric is assumed as,

gMN =

(
gµν − κ2φ2AµAν −κφ2Aµ
−κφ2Aν −φ2

)
I ĝMN becomes the gravitational tensor potential framed by the electromagnetic four-potential Aµ and scalar

field φ.

I It was assumed that the metric is independent of the extra dimensional coordinate y . This assumption is

known as the cylindrical condition: ∂gMN/∂x4 = 0

I Along with the identifications g44 = −φ2 = −1, κ =
√

16πG
c4 ,the resulting field equations GMN = 0 are

G̃µν =
8πG

c4
Tµν

∇µFµν = 0

I with Tµν ≡ 1
2 (gµνFαβF

αβ − F α
µ Fνα). This situation is known as “Kaluza miracle”.
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Compactified extra dimension

I To justify the cylinder condition, Oskar Klein assumed a microscopic, curled-up dimension. Compactified

in toroidal fashion.

X (xµ, x4) = X (xµ, x4 + 2πR)

I All fields are periodic in y = x4 and may be expanded in a Fourier series:

gµν(x, y) =
+∞∑

n=−∞
gµνn(x)e in·y/R

Aµ(x, y) =
+∞∑

n=−∞
Aµn(x)e in·y/R

φ(x, y) =
+∞∑

n=−∞
φn(x)e in·y/R

with g∗µνn(x) = gµν−n(x), A∗µn(x) = Aµ−n(x), φ∗n (x) = φ−n(x)
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I So, the Kaluza-Klein theory describes an infinite number of four-dimensional fields.

I The equations of motion corresponding to the above action are,

(∂µ∂µ − ∂y
∂y )gµν(x, y) = (∂µ∂µ +

n2

R2
)gµνn(x) = 0

(∂µ∂µ − ∂y
∂y )Aµ(x, y) = (∂µ∂µ +

n2

R2
)Aµn(x) = 0

(∂µ∂µ − ∂y
∂y )φ(x, y) = (∂µ∂µ +

n2

R2
)φn(x) = 0

I Comparing these with the standard Klein-Gordon equation, we get ‘mass’ corresponding to these fields as,

mn ∼
n

R

where n is the mode of excitation.

I In four dimensions we see all these excited states with mass or momentum ∼ O(n/R). Since we want to

unify the electromagnetic interactions with gravity, the natural radius of compactification will be the Planck

length: R =
1

Mp
, where the Planck mass Mp ∼ 1018GeV .

I The resulting action of the scalar field (called dilaton) is given by

S =

∫
d4x

{
1

2
∂µφ

(0)
∂
µ
φ

(0) +
∞∑
n=1

[
∂µφ

(n)†
∂
µ
φ

(n) −
n2

R2
φ

(n)†
φ

(n)
]}

.
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I From the 4D point of view that the action describes an (infinite) series of particles (Kaluza-Klein tower)

with masses m(n) = n/R.

I If the field Φ(xµ, y) has a 5D mass m0, then the 4D Kaluza-Klein particles will have masses, m2
(n) =

m2
0 + n2/R2.

KK mass spectrum for a field on the circle.

I In 5D, the gauge field AM (xµ, y) has the following Fourier decomposition along the compact dimension,

AM (xµ, y) =
1

√
2πR

∑
n

A
(n)
M (xµ)e i

n
R

y
.

I The action of 5D gauge field becomes

S =

∫
d4x dy

[
−

1

4
FMNF

MN
]

=

∫
d4x

{(
−

1

4
F (0)
µνF

(0)µν +
1

2
∂µA

(0)
5 ∂

µA
(0)
5

)
+
∑
n≥1

2

(
−

1

4
F (−n)
µν F (n)µν +

1

2

n2

R2
A(−n)
µ A(n)

µ

)}
.

I We can see that zero modes contain a 4D gauge field and a real scalar.
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Graviton Spectrum

I The Kaluza-Klein metric has 15 independent components. 5 separate conditions to fix the gauge using

harmonic gauge can be imposed as follows:

∂MgM
N −

1

2
∂Ng

M
M = 0.

I This brings down the number of degrees of freedom to 10. However, this is not yet a complete gauge fixing,

the gauge transformations

gMN −→ gMN + ∂MεN + ∂NεM

with �εν = 0 are still allowed.

I This means another 5 conditions can be imposed which results in only 5 independent degrees of freedom.

Whereas in four dimensions we have only 2 degrees of freedom for a massless graviton.

I This implies that from four dimensional point of view a higher dimensional graviton will contain particles

other than just ordinary four dimensional graviton.

I From 5D Einstein Hilbert action: Ŝ = 1
2k̂2

∫
d5x̂
√
−ĝ R̂, one can write the four dimensional action for the

n = 0 modes as,

S =
1

2k2

∫
dx4
√
−g [R −

1

4
e−
√

3φFµν0F
µν
0 −

1

2
∂µφ0∂

µ
φ0]
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Matching process

I A general guideline for a higher-dimensional theory is to check that its law energy limit matches our physics.

I Assumed a theory with higher dimensions compactified into circles of radii rn = R

ds2 = ηµνdx
µdxν − r2

(n)dΩn
2

I If both gravity and gauge fields propagate in higher dimensions, we need to match

Sn+4
HE = −Mn+2

∗

∫
dn+4x

√
gn+4R4+n

S4+n
GF = −

∫
d4+nx

1

4g∗2
FMNF

MN
√

g4+n

I Form matching Hilbert action

−Mn+2
∗

∫
dΩnR

n
∫

d4x

√
g (4)R(4) = −MPl

2
∫

d4x

√
g (4)R(4) =⇒ M2

Pl = M2+n
∗ Vn(R) .

The volume of extra dimension space: Vn(R) =
∫
dΩnR

n = π
n
2

Γ(n/2+1) R
n implies that R ∼ MPl

2
n

M∗
1+ 2

n

I From matching the gauge field action, we get 1 ≈ RnM∗
n

I Combining these relations yields R ∼ 1
MPl

= lPl ≈ 10−32 cm.
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Brane-world models

I If SM fields are localized to a four-dimensional brane. The only restriction on the radius would be

R ∼
MPl

2
n

M∗
1+ 2

n

I In 1998 Arkani-Hamed, Dimopoulos and Dvali (ADD) realize that extra dimensions could explain the

weakness of gravity: GN � GF .

I For mEW is the fundamental Planck scale and choose R such that the observed mass scale is Mpl

R ∼ 10
30
n
−17cm × (

1TeV

mEW

)1+ 2
n

I Two extra dimensions (n = 2)→ R ∼ 100µm. Deviation from Newton’s law would be accommodated by

the experimental limit on gravity.
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Experimental Constraints and Tests of Large Extra Dimensions

I TeV cutoff: Precision electroweak tests and high energy collisions are sensitive to higher-dimensional oper-

ators suppressed by the TeV scale.

Some operators can be induced by KK graviton exchanges. For example e+e− → e+e− through KK

gravitons induces an operator,

e-

e+

e-

e+

KK graviton

e-

e+

e-

e+

KK graviton

I Light degrees of freedom: They can appear as missing energies at colliders and rare decays of unstable

particles. They also affect astrophysics (e.g., star cooling) and cosmology (e.g., expansion rate of the

universe).

KK graviton loop gives rise to a relevant contribution to g − 2. It gives stringent constraint on mKK .

I Long-lived KK gravitons: They can affect astrophysics (diffuse γ-ray background from late decays of long-

lved particles) and cosmology (over-closure of the universe).
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Warped extra dimensions

I Warped space-times, the metric warps exponentially along the extra dimension

ds2 = f (y)gµν(x)dxµdxν + gab(y)dyadyb

I Assuming the following

An S1 symmetry:

y → y + 2πR

A Z2 symmetry

y → −y

I A warp factor satisfying the field equations and the previous assumptions is f (y) = e−2k|y|

I An important feature of this model is that it can only admit an AdS space: k =
√
−Λκ, where κ is the

5D Einstein constant related to the Planck mass as κ2 ∼ 1
M3 and Λ is the cosmological constant.

The metric eventually takes the form

ds2 = e−2k|y|
ηµνdx

µdxν − dy2
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Hierarchy problem

I This model solves the hierarchy problem by connecting the four-dimensional Planck scale and mass param-

eters to the five-dimensional scales.

I The law energy limit is approached by a weak-field background perturbation hµν(xµ)� 1:

ds2 = e−2kT (xµ)|φ|dxµdxν [ηµν + hµν(xµ)] + T 2(xµ)dy2

Where the modulus field T (x) is stabilized at rc being the vacuum expectation value 〈T (x)〉 ≡ rc

ds2 = e−2krc |φ|dxµdxν [ηµν + hµν(xµ)] + rc
2dy2

I The effective action implies:

S = −M3
∫

d5x

√
g (5)(R(5) + κ

2) ⊃ −M3
∫

dye−2k|y|
∫

d4x

√
g (4)(R(4) + κ

2)

I We now compare this to the four-dimensional action S = −M2
Pl

∫
d4x
√

g (4)(R(4) + κ2) to get

M2
pl = M3

∫ y=b

y=−b

dye−2k|y| =
M3

k
[1− e−2kb ]

I It is evident by now that this scenario provides a quite different approach than ADD model. The effect of

the warp factor is negligible MPl ≈ M∗
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Hierarchy problem

I The Electroweak mass scale however will be modified. The matter field which, unlike gravity, is localized

to one of the branes. The action for the Higgs scalar

SH =

∫
d4x
√

g ind [gµνD
µHDνH − λ((H†H)− v2)2]

I The induced metric at the brane at y = b is g ind
µν = e2kRηµν

SH =

∫
d4xe−4kb [e2kb

ηµνD
µHDνH − λ((H†H)− v2)2]

I The field can be redefined as H̃ = e−kbH to get a canonically normalized field. The action is then

SH =

∫
d4x[ηµν∂

µH̃∂ν H̃ − λ((H̃†H̃)− (e−kbv)2)2]

I Thus:

ṽ = e−kRv .

I If v is regarded as the fundamental mass scale, the warp factor can be used to generate the TeV scale of

the weak scale.

I The brane at y = R is referred to as the TeV brane and that at y = 0 is referred to as the Planck brane

where the warp factor would have no effect and the mass scale parameters are of the Planck mass order.
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RS1 Model

I In this model, no large dimension necessary to explain weakness of gravity

I Graviton?s interaction is exponentially suppressed away from ?Gravitybrane?

I Gravity is weak everywhere except Gravitybrane

I Mass hierarchy natural on Weakbrane!
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RS1 Signatures

I Experimental consequences very distinctive

I KK modes interact not with Planck suppressed interactions

I TeV-suppressed interactions! Means resonances produced and decay in detector

I Will look like true resonances?If we?re lucky, we can even see they are spin-2.

I Very dramatic signals if RS1 correct
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RS2 model

I This model is known as an Alternative to Compactification.

I The RS2 model uses the same geometry as RS1, but there is no TeV brane.

I The particles of the standard model are presumed to be on the Planck brane.

I This model was originally of interest because it represented an infinite 5-dimensional model, which, in many

respects, behaved as a 4-dimensional model.
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Graviton KK Modes

I 5D graviton leads to tower of KK excitations.

I Lightest KK mode G (1): mass ∼ TeV, couples to SM:

1

Λπ
∼

k

MPl

× TeV

I Parameters: mG , k/MPl ∈ [0.01, 0.1]
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The Randall–Sundrum Model
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Production and Decay at the LHC

I Dominant production via gluon fusion or

qq̄ → G

I Decays:

`+`−, γγ, W+W−, tt̄, jj

I Spin-2: unique angular distributions

`+

`−

g

g

G

Other decay channels: γγ, WW , tt̄, hadronic jets

Diphoton invariant mass spectra after selection is applied, scaled to 100 pb−1 for M1 = 750,

1000, 1250, and 1500 GeV/c2, k̃ = 0.01 samples.
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Experimental Signature

I Narrow resonance in invariant mass spectrum:

pp → G (1) → `+`−, γγ

I Clean, high-resolution final states.

I Search for peak in high mass tail.
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Current Experimental Limits

I ATLAS/CMS Run 2 (
√
s = 13 TeV, 139 fb−1):

No excess observed

Exclusion limits on mG as function of k/MPl

(left) The 95% CL limit on the production cross section times branching ratio of an RS model

graviton decaying into two photons as a function of the graviton mass.

(right) 95% CL excluded region in the plane of k/MPl versus graviton mass.
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Summary

I RS model offers elegant solution to hierarchy problem.

I Graviton KK modes produce striking resonant signatures at the LHC.

I Current data places strong constraints on RS parameter space.

I No evidence of a narrow resonance decaying into a pair of photons above the continuum

background is observed.

I The results exclude at 95% CL RS graviton masses below 545 (920) GeV for the

dimensionless RS coupling k/MPl = 0.02(0.1).

I HL-LHC will enhance sensitivity to higher mG .
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