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Limitations of the Schwarzschild Metric

The Schwarzschild solution describes a static, spherically symmetric,
vacuum spacetime.

It predicts black holes, white holes, and wormholes in its maximal
extension.

Reality Check: Such features are unlikely in the real world.

Real astrophysical objects contain matter (Tµν ̸= 0).
Birkhoff’s theorem states that any spherically symmetric vacuum
region is described by part of the Schwarzschild metric.
However, the presence of matter dramatically alters the global
spacetime picture.
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From Stars to Black Holes

A static spherical object (star) with radius R > 2GM has a
Schwarzschild exterior.

No singularities or horizons exist *within* the star.

Stellar Evolution: Stars evolve and may collapse under gravity.

If a star shrinks below r = 2GM, it forms a black hole with a
singularity and an event horizon.

No White Holes/Wormholes: Realistic stellar collapse models (e.g.,
conformal diagrams) show a future event horizon and singularity, but
no white hole, past horizon, or separate asymptotic regions.

This chapter focuses on understanding static configurations describing
the interiors of spherically symmetric stars.
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Metric for Non-Vacuum Solutions

For a general static, spherically symmetric spacetime (now with
matter), the metric is:

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2

Our goal is to find the functions α(r) and β(r) by solving the full
Einstein equations.

We now use the full Einstein Field Equation (Gµν = 8πGTµν), as we
are looking for non-vacuum solutions.
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Full Einstein Equations and Matter Model

Einstein Tensor Components (Gµν):

Gtt =
1
r2 e

2(α−β)(2r∂rβ − 1 + e2β)
Grr =

1
r2 (2r∂rα+ 1− e2β)

Gθθ = r2e−2β[∂2
r α+ (∂rα)

2 − ∂rα∂rβ + 1
r (∂rα− ∂rβ)]

Gϕϕ = sin2 θ Gθθ

Matter Model (Perfect Fluid): We model the star as a perfect fluid
with energy density ρ(r) and pressure p(r).

Stress-Energy Tensor: Tµν = (ρ+ p)UµUν + pgµν
For static solutions, the 4-velocity is Uµ = (eα, 0, 0, 0) (normalized to
UµUµ = −1).
Components of Tµν : Ttt = e2αρ, Trr = e2βp, Tθθ = r2p,
Tϕϕ = r2 sin2 θp.
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Three Independent Equations

Equating the components of Gµν and 8πGTµν yields three independent
equations:

1 tt-component:

1

r2
e−2β(2r∂rβ − 1 + e2β) = 8π Gρ

2 rr-component:

1

r2
e−2β(2r∂rα+ 1− e2β) = 8π Gp

3 θθ-component:

e−2β[∂2
r α+ (∂rα)

2 − ∂rα∂rβ +
1

r
(∂rα− ∂rβ)] = 8π Gp
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Mass Function and Metric Generalization

To simplify the equations, we introduce a new function m(r):

m(r) =
1

2G
(r − re−2β) or equivalently e2β =

[
1− 2Gm(r)

r

]−1

The metric then becomes:

ds2 = −e2α(r)dt2 +

[
1− 2Gm(r)

r

]−1

dr2 + r2dΩ2

This form for grr is a direct generalization of the Schwarzschild metric.
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Mass within a Radius

The tt-component of Einstein’s equation (with m(r)) integrates to:

dm

dr
= 4πr2ρ =⇒ m(r) = 4π

∫ r

0
ρ(r ′)r ′2dr ′

This m(r) is interpreted as the mass (or energy) contained within
radius r .

At the star’s surface (r = R), m(R) must match the Schwarzschild
mass M of the exterior solution:

M = m(R) = 4π

∫ R

0
ρ(r)r2dr

Binding Energy: The true integrated energy density
M = 4π

∫ R
0 ρ(r)r2eβ(r)dr is generally greater than M. The difference

EB = M −M > 0 represents the gravitational binding energy.
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Pressure Gradient in a Star

The rr-component of Einstein’s equation can be written as:

dα

dr
=

Gm(r) + 4πGr3p

r [r − 2Gm(r)]

Instead of using the θθ equation directly, we use the
energy-momentum conservation equation (∇µT

µν = 0).

The r -component of ∇µT
µν = 0 gives:

(ρ+ p)
dα

dr
= −dp

dr

Combining these two equations (eliminating α(r)) yields the
Tolman-Oppenheimer-Volkoff (TOV) Equation:

dp

dr
= −(ρ+ p)[Gm(r) + 4πGr3p]

r [r − 2Gm(r)]

This is the equation of hydrostatic equilibrium for a spherically
symmetric star in GR.
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Closing the System of Equations

The TOV equation relates p(r) to ρ(r) and m(r).

To get a closed system, we need an equation of state (p = p(ρ)),
which relates pressure to energy density.

Common astrophysical equations of state include polytropes
(p = Kργ).
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A Simple Model: Constant Density Star

A simple model assumes an incompressible fluid: density ρ(r) = ρ∗
(constant) for r < R, and 0 for r > R.

Integrating dm/dr = 4πr2ρ:

m(r) =

{
4
3πr

3ρ∗, r < R
4
3πR

3ρ∗ = M, r > R.

Integrating the TOV equation with this ρ(r) gives p(r). The pressure
increases towards the core.

The metric component e2α(r) can also be found.
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A Simple Model: Constant Density Star

The next step is to obtain the pressure through integrating
hydrostatic equilibrium equation;

Now integrate the rr -component of Einstein’s equation to obtain α(r).
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Limits to Stellar Stability

For a star of fixed radius R, the central pressure p(0) becomes infinite
if its mass exceeds a maximum value:

Mmax =
4

9G
R

This implies that if we try to squeeze more mass than Mmax into a
radius R, General Relativity admits no static solutions.

Such a star must inevitably continue shrinking, eventually forming a
black hole.

Buchdahl’s Theorem: A more general result states that for any
reasonable static, spherically symmetric interior solution, M < 4

9G R.
This reinforces the idea that there’s a limit to how compact a star can
be without collapsing.
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Stars Supported by Electron Degeneracy Pressure

After nuclear fuel is exhausted, stars shrink under gravity.

Collapse may be halted by Fermi degeneracy pressure from
electrons (Pauli exclusion principle).

A stellar remnant supported by electron degeneracy pressure is called
a white dwarf.

Typical white dwarfs are Earth-sized and are the end state for most
stars.
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Beyond the Chandrasekhar Limit

If a star’s mass exceeds the Chandrasekhar limit (approx. 1.4M⊙),
electron degeneracy pressure is insufficient.

Electrons combine with protons to form neutrons and neutrinos
(inverse beta decay).

The result is a neutron star, with a typical radius of about 10 km.

Neutron stars often manifest as pulsars (rapidly spinning, highly
magnetized).
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Beyond the Oppenheimer-Volkoff Limit

If a neutron star’s mass exceeds the Oppenheimer-Volkoff limit
(current estimates: 3-4 M⊙), even neutron degeneracy pressure
cannot resist gravity.

The star is believed to continue collapsing, forming a black hole.

Detection: Black holes don’t emit light (neglecting Hawking
radiation).

Around BH’s accretion disks form, heating up and emitting X-rays.
The Event Horizon Telescope has captured the first images of
supermassive black holes at the center of M87 and the Milky Way.

Classes of Black Holes:
Stellar-mass black holes: ∼ solar mass, endpoints of massive stars.
Supermassive black holes: 106 − 109M⊙, found at galactic centers
(e.g., Sgr A* in Milky Way).
Other possibilities: primordial, middleweight black holes.

Most observed black holes are expected to be spinning due to
accretion disk dynamics.
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