Schwarzschild Spacetime and Relativistic Orbits

Adel Awad

July 13, 2025

A Fundamental Solution in General Relativity

- In this chapter, we study a spherically symmetric, static, vacuum solution of Einstein Field Equations (EFE).
- Let's understand the meaning of these terms:
 - **Vacuum Solution (** $T_{\mu\nu} = 0$ **):** A solution without any source of matter or energy.
 - **2** Spherically Symmetric: The metric is invariant under rotations.
 - Quantities invariant under rotation: $\overline{x} \cdot \overline{x} = r^2$, $d\overline{x} \cdot d\overline{x}$, etc.
 - **Static Solution:**
 - Metric components $g_{\mu\nu}$ do not depend on time.
 - No cross terms like g_{0i}dtdxⁱ in the metric. This ensures invariance under time inversion symmetry (t → −t).

Constructing the Metric

- Due to spherical symmetry, the metric depends only on dot products like $\overline{x} \cdot \overline{x} = r^2$, $\overline{x} \cdot d\overline{x}$, and $d\overline{x} \cdot d\overline{x}$.
- The most general form of the metric in Cartesian-like coordinates, respecting static and spherical symmetry, is:

$$dS^{2} = -\tilde{A}(r)dt^{2} + \tilde{C}(r)(\overline{x} \cdot d\overline{x})^{2} + \tilde{D}(r)(d\overline{x} \cdot d\overline{x})$$

- Remember, the metric is always quadratic in the differentials (dt, dx^{i}) .
- Converting to spherical coordinates $(x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi, z = r \cos \theta)$:
 - $\overline{x} \cdot d\overline{x} = rdr$
 - $d\overline{x} \cdot d\overline{x} = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta \ d\phi^2$
- Substituting these into the metric:

$$dS^2 = -\tilde{A}(r)dt^2 + \tilde{F}(r)dr^2 + \tilde{D}(r)(d\theta^2 + \sin^2\theta \ d\phi^2)$$

where $\tilde{F}(r) = r^2 \tilde{C}(r) + \tilde{D}(r)$.

Coordinate Transformation for Simplicity

- We can perform a coordinate transformation to simplify the $\tilde{D}(r)$ term. Let $r' = \sqrt{\tilde{D}(r)}$.
- After this transformation, and dropping the prime from r', the most general form for a spherically symmetric and static metric is:

$$dS^2 = -A(r)dt^2 + B(r)dr^2 + r^2(d\theta^2 + \sin^2\theta \ d\phi^2)$$

• Our goal is to solve the Einstein Field Equations $(R_{\mu\nu} = 0)$ for this metric to find the functions A(r) and B(r).

Components of the Metric Tensor

For the metric $dS^2 = -A(r)dt^2 + B(r)dr^2 + r^2(d\theta^2 + \sin^2\theta \ d\phi^2)$, the non-zero metric components are:

- $g_{00} = -A(r)$
- $g_{11} = B(r)$
- $g_{22} = r^2$
- $g_{33} = r^2 \sin^2 \theta$

And their inverses $(g^{\mu\nu})$:

•
$$g^{00} = -A(r)^{-1}$$

• $g^{11} = B(r)^{-1}$
• $g^{22} = r^{-2}$
• $g^{33} = (r^2 \sin^2 \theta)^{-1}$

Connection Coefficients $(\Gamma^{\sigma}_{\mu\nu})$

Using the formula $\Gamma^{\sigma}_{\mu\nu} = \frac{1}{2}g^{\sigma\rho}(g_{\rho\mu,\nu} + g_{\rho\nu,\mu} - g_{\mu\nu,\rho})$, the non-zero Christoffel symbols are:

• $\Gamma_{01}^0 = \frac{A'}{2A}$ • $\Gamma_{00}^1 = \frac{A'}{2R}$ • $\Gamma_{11}^1 = \frac{B'}{2B}$ • $\Gamma_{22}^1 = -\frac{r}{P}$ • $\Gamma_{33}^1 = -\frac{r \sin^2 \theta}{R}$ • $\Gamma_{12}^2 = \frac{1}{\pi}$ • $\Gamma_{13}^3 = \frac{1}{2}$ • $\Gamma_{23}^3 = \cot \theta$ • $\Gamma_{33}^2 = -\sin\theta\cos\theta$ (where $A' = \frac{dA}{dr}$ and $B' = \frac{dB}{dr}$).

Calculating $R_{\mu\nu}$ for Vacuum Solution

For a vacuum solution, we set $R_{\mu\nu} = 0$.

• *R*₀₀ component:

$$R_{00} = \frac{A''}{2B} - \frac{A'B'}{4B^2} - \frac{(A')^2}{4AB} + \frac{A'}{rB}$$

• *R*₁₁ component:

$$R_{11} = -\frac{A''}{2A} + \frac{A'}{4A}\left(\frac{A'}{A} + \frac{B'}{B}\right) + \frac{B'}{rB}$$

• *R*₂₂ component:

$$R_{22} = 1 - \frac{1}{B} - \frac{r}{2B} \left(\frac{A'}{A} - \frac{B'}{B} \right)$$

• R₃₃ component:

$$R_{33}=\sin^2\theta\ R_{22}.$$

Adel Awad

Finding A(r) and B(r)

From the equations $R_{00} = 0$ and $R_{11} = 0$, after algebraic manipulation, one can derive:

$$\frac{A'}{A} + \frac{B'}{B} = 0$$

Integrating this gives $\ln A + \ln B = \text{const}$, or AB = const. Let $AB = C_0$. So $B(r) = \frac{C_0}{A(r)}$. Substituting this into the $R_{22} = 0$ equation:

$$1 - \frac{1}{B} - \frac{r}{2B} \left(\frac{A'}{A} - \frac{B'}{B}\right) = 0$$
$$1 - \frac{A}{C_0} - \frac{r}{2} \frac{A}{C_0} \left(\frac{A'}{A} - \frac{-C_0 A'/A^2}{C_0/A}\right) = 0$$
$$1 - \frac{A}{C_0} - \frac{r}{2} \frac{A}{C_0} \left(\frac{A'}{A} + \frac{A'}{A}\right) = 0$$
$$1 - \frac{A}{C_0} - \frac{rA'}{C_0} = 0$$

Determining the Constants from Newtonian Limit

$$C_0 = A + rA' = \frac{d}{dr}(rA)$$

Integrating this last equation:

$$C_0r + C_1 = rA(r) \implies A(r) = C_0 + \frac{C_1}{r}$$

And $B(r) = \frac{1}{1+C_1/(C_0r)}$. Set $C_0 = 1$ (by scaling *t*).

In the Newtonian limit, we have $g_{00} \approx -1 - \frac{2\Phi}{c^2}$, where $\Phi = -\frac{GM}{r}$ is the Newtonian gravitational potential.

So, $C_1 = -2GM$. The final form of the **Schwarzschild Metric** is:

$$dS^2 = -\left(1 - \frac{2GM}{r}\right)dt^2 + \frac{dr^2}{\left(1 - \frac{2GM}{r}\right)} + r^2(d\theta^2 + \sin^2\theta \ d\phi^2)$$

This is the unique static, spherically symmetric, vacuum solution to Einstein's field equations.

Adel Awad

Key Characteristics of the Solution

- Asymptotically Flat: As $r \to \infty$, the term $\left(1 \frac{2GM}{r}\right) \to 1$.
 - Therefore, the metric approaches the Minkowski metric (flat spacetime). This means the gravitational field vanishes far from the source.
- Dependence on Mass (*M*):
 - The solution depends on only one parameter, M. If M = 0, the metric is again Minkowski (flat).
 - This M represents the total mass of the spherically symmetric object.
- External Field Description: This solution describes the gravitational field *outside* any spherically symmetric object, such as a star, planet, or black hole.
- Independence of Mass Distribution (Birkhoff's Theorem): The solution depends only on the total mass *M*, not on how the mass is distributed within the object (as long as it's spherically symmetric).
 - This is a powerful result: any spherically symmetric, vacuum solution must be the Schwarzschild solution, even if it's time-dependent.
 - Implication: A radially pulsating star does not emit gravitational waves in its vacuum exterior, as its metric must remain static (Schwarzschild).

Spherical Symmetry and Birkhoff's Theorem

Schwarzschild Radius and Singularities

- One might notice two values of *r* where the metric is not mathematically well-defined:
 - $r_s = 2GM$ (Schwarzschild Radius)
 - *r_{sing}* = 0
- $r_s = 2GM$ (Coordinate Singularity / Event Horizon):
 - This was initially thought to be a non-physical region.
 - As *r* crosses r_s , the time and radial coordinates exchange their signature (e.g., $1 \frac{2GM}{r} < 0$).
 - *r_s* is a **trapping surface** or **event horizon**: once you enter this region, you cannot go out, even at the speed of light.
 - It's a **coordinate singularity**, meaning no curvature component becomes infinite here. An observer crossing it might not notice a large change if *M* is large.
- r = 0 (Curvature Singularity):
 - At r = 0, Riemann Curvature components become infinite.
 - This is a true physical singularity.

Proper Distance and Proper Time

• Proper Radial Spatial Distance (S₁₂):

• Take $dt = 0, d\theta = 0, d\phi = 0.$

•
$$dS^2 = \frac{dr^2}{1 - \frac{2GM}{r}}$$
.

• The proper distance between two points r_1 and r_2 is:

$$S_{12} = \int_{r_1}^{r_2} \frac{dr}{\sqrt{1 - \frac{2GM}{r}}}$$

• Notice how the combination $\frac{GM}{r}$ controls the proper distance. This distance is larger than the coordinate distance $r_2 - r_1$.

• Proper Time $(d\tau)$:

• For an observer at fixed spatial coordinates ($dr = 0, d\theta = 0, d\phi = 0$).

•
$$dS^2 = -d\tau^2 = -(1 - \frac{2GM}{r}) dt^2$$

• So,
$$d\tau = \sqrt{1 - \frac{2GM}{r}} dt$$
.

• **Time Dilation:** Proper time gets shorter as *r* approaches 2*GM*. At r = 2GM, time appears to stop for an outside observer $(d\tau \rightarrow 0 \text{ for finite } dt)$.

Spherical Symmetry and Proper Distance

Frequency Shift in a Gravitational Field

- Consider an emitter at fixed spatial coordinates (r_E, θ_E, ϕ_E) emitting a photon, received by an observer at (r_R, θ_R, ϕ_R) .
- The emission happens between t_E and $t_E + \Delta t_E$, and reception between t_R and $t_R + \Delta t_R$.
- Assuming emitter and receiver are static (following time-like geodesics, $dr = d\theta = d\phi = 0$):

• Proper time interval at emitter: $\Delta \tau_E = \sqrt{1 - \frac{2GM}{r_E}} \Delta t_E$.

• Proper time interval at receiver: $\Delta \tau_R = \sqrt{1 - \frac{2GM}{r_R}} \Delta t_R.$

 Since the time taken for light to travel between two fixed points is the same in coordinate time (Δt_R = Δt_E):

$$\frac{\Delta \tau_R}{\Delta \tau_E} = \frac{\sqrt{1 - \frac{2GM}{r_R}}}{\sqrt{1 - \frac{2GM}{r_E}}}$$

Frequency Shift in a Gravitational Field

• Since frequency $\nu \propto \frac{1}{\tau}$:

$$\frac{\nu_R}{\nu_E} = \frac{\sqrt{1 - \frac{2GM}{r_E}}}{\sqrt{1 - \frac{2GM}{r_R}}}$$

• For a receiver at $r_R = \infty$ (far away) and an emitter at $r_E = r$:

$$\nu_R = \sqrt{1 - \frac{2GM}{r}}\nu_E$$

- Redshift: If r_E < r_R, then ν_R < ν_E, meaning the frequency is shifted to red (lower frequency).
- Extreme Redshift: As the signal is emitted from $r = r_s = 2GM$, the frequency $\nu_R \rightarrow 0$, meaning the signal effectively disappears.

Classical Orbits in a Central Force

• For a particle moving in a central force (e.g., gravitational field), the energy *E* is:

$$E = \frac{1}{2}\dot{r}^2 + \frac{l^2}{2r^2} + U(r)$$

where I is the angular momentum, and U(r) is the potential energy.

- For Newtonian gravity, $U(r) = -\frac{GM}{r}$ (assuming unit mass for the particle).
- The Newtonian Effective Potential is:

$$V_{eff}^{(N)} = -\frac{GM}{r} + \frac{l^2}{2r^2}$$

• The radial equation of motion is $\dot{r} = \pm \sqrt{2(E - V_{eff}^{(N)})}$.

• The shape of the orbit $\phi(r)$ is found by integrating:

$$\phi(r) = \int \frac{(l/r^2)}{\sqrt{2(E - V_{eff}^{(N)})}} dr$$

Energy and Angular Momentum

- Newtonian orbits are conic sections: Hyperbola (E > 0), Parabola (E = 0), Ellipse (V_{min} < E < 0), Circle (E = V_{min}).
- For a test particle in Schwarzschild spacetime, the Lagrangian is $L = \sqrt{-g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}}$.
- From Euler-Lagrange equations, symmetries (Killing vectors) lead to conserved quantities:
 - **Energy (***E***):** Due to time-translation symmetry $\left(\frac{\partial L}{\partial t} = 0\right)$.

$$E = -\left(1 - \frac{2GM}{r}\right)\frac{dt}{d\tau}$$

(Here, $d\tau$ is proper time). This is $E = -g_{00}u^0$.

• Angular Momentum (/): Due to azimuthal symmetry $\left(\frac{\partial L}{\partial \phi} = 0\right)$.

$$I = r^2 \sin^2 \theta \frac{d\phi}{d\tau}$$

For equatorial orbits $(\theta = \pi/2)$, this simplifies to $I = r^2 \frac{d\phi}{d\tau}$.

Adel Awad

Energy and Angular Momentum

• The normalization condition for the 4-velocity $u^{\mu} = \frac{dx^{\mu}}{d\tau}$ is $u_{\mu}u^{\mu} = -1$:

$$-1 = -\left(1 - \frac{2GM}{r}\right)\left(\frac{dt}{d\tau}\right)^2 + \left(1 - \frac{2GM}{r}\right)^{-1}\left(\frac{dr}{d\tau}\right)^2 + r^2\left(\frac{d\theta}{d\tau}\right)^2 + r^2\sin^2\theta\left(\frac{d\phi}{d\tau}\right)^2$$

Equation of Motion and GR Effective Potential

• For equatorial orbits ($\theta = \pi/2$, so $d\theta/d\tau = 0$), substituting the conserved quantities (*E* and *I*) into the 4-velocity normalization condition, we can rearrange to get an energy-like equation:

$$E^{2} = \left(\frac{dr}{d\tau}\right)^{2} + \left(\frac{l^{2}}{r^{2}} + 1\right)\left(1 - \frac{2GM}{r}\right)$$

- This can be written in the form $\frac{1}{2} \left(\frac{dr}{d\tau}\right)^2 + V_{eff}^{(GR)}(r) = \frac{E^2 1}{2} = \mathcal{E}$, where \mathcal{E} is constant.
- The General Relativistic Effective Potential is:

$$V_{eff}^{(GR)}(r) = -\frac{GM}{r} + \frac{l^2}{2r^2} - \frac{GMl^2}{r^3}$$

• **Comparison with Newtonian:** The GR effective potential has an additional attractive term $-\frac{GMl^2}{r^3}$, which is proportional to $1/r^3$. This term becomes significant at small radii and leads to important new phenomena.

Adel Awad

Equation of Motion and GR Effective Potential

Figure: Different values for l/m=4.5, 4.0, 3.46, 3.0

Impact of the $1/r^3$ Term

- The $1/r^3$ term in $V_{eff}^{(GR)}$ causes the potential to drop more steeply at small r compared to the Newtonian case.
- This leads to:
 - A maximum in the potential at small radii, corresponding to unstable circular orbits.
 - A minimum at larger radii, corresponding to stable circular orbits.
 - For very small r, the potential plunges to $-\infty$, indicating that particles eventually fall into the singularity.
- Figure illustrates the different types of orbits based on the energy ${\cal E}$ relative to the effective potential.
 - Circular Orbits: Occur at extrema of V_{eff}.
 - **Bound Precessing Orbits:** Energy between minimum and maximum, leads to non-closed elliptical-like orbits that precess.
 - Scattering Orbits: Energy above the maximum, particles approach and then recede, but are deflected.
 - **Plunging Orbits:** Energy below the minimum, particles fall directly into the central mass.

GR Effective Potential: Different Orbits

Conditions and Properties

• Circular orbits occur when the energy \mathcal{E} is equal to a minimum or maximum of the effective potential $(V_{eff}^{(GR)})$.

• At these points,
$$\dot{r} = 0$$
, so $\mathcal{E} = V_{eff}^{(GR)}$. Also, $\frac{dV_{eff}^{(GR)}}{dr} = 0$.

• Solving $\frac{dV_{eff}^{(GR)}}{dr} = 0$ for r (for circular orbits) yields:

$$r = \frac{l^2}{2GM} \pm \frac{1}{2}\sqrt{\frac{l^4}{(GM)^2} - 12l^2}$$

- This equation has two solutions if $l^2/(GM)^2 > 12$:
 - The plus sign corresponds to a stable circular orbit (minimum of potential).
 - The minus sign corresponds to an unstable circular orbit (maximum of potential).
- The innermost stable circular orbit (ISCO) is at r = 6GM. Orbits inside this radius are unstable.

Adel Awad

Kepler's Laws in General Relativity

The angular velocity (Ω) of a particle in a circular orbit, as seen by a distant observer (for θ = π/2), is:

$$\Omega = \frac{d\phi}{dt} = \frac{I}{r^2} \left(1 - \frac{2GM}{r} \right) \frac{1}{E}$$

• Using the relationship between *E*, *I*, and *r* for circular orbits, this simplifies to:

$$\Omega = \sqrt{\frac{GM}{r^3}}$$

- This is precisely **Kepler's Third Law** from Newtonian gravity! It shows that for circular orbits, the orbital period is the same as in Newtonian gravity, even though the underlying mechanics are different due to spacetime curvature.
- The period P is:

$$P = \frac{2\pi}{\Omega}$$