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A Fundamental Solution in General Relativity

In this chapter, we study a spherically symmetric, static, vacuum
solution of Einstein Field Equations (EFE).

Let’s understand the meaning of these terms:
1 Vacuum Solution (Tµν = 0): A solution without any source of

matter or energy.
2 Spherically Symmetric: The metric is invariant under rotations.

Quantities invariant under rotation: x · x = r 2, dx · dx , etc.
3 Static Solution:

Metric components gµν do not depend on time.
No cross terms like g0idtdx

i in the metric. This ensures invariance
under time inversion symmetry (t → −t).
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Constructing the Metric

Due to spherical symmetry, the metric depends only on dot products
like x · x = r2, x · dx , and dx · dx .
The most general form of the metric in Cartesian-like coordinates,
respecting static and spherical symmetry, is:

dS2 = −Ã(r)dt2 + C̃ (r)(x · dx)2 + D̃(r)(dx · dx)

Remember, the metric is always quadratic in the differentials (dt, dx i ).

Converting to spherical coordinates (x = r sin θ cosϕ, y = r sin θ sinϕ,
z = r cos θ):

x · dx = rdr
dx · dx = dr2 + r2dθ2 + r2 sin2 θ dϕ2

Substituting these into the metric:

dS2 = −Ã(r)dt2 + F̃ (r)dr2 + D̃(r)(dθ2 + sin2 θ dϕ2)

where F̃ (r) = r2C̃ (r) + D̃(r).
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Coordinate Transformation for Simplicity

We can perform a coordinate transformation to simplify the D̃(r)

term. Let r ′ =
√

D̃(r).

After this transformation, and dropping the prime from r ′, the most
general form for a spherically symmetric and static metric is:

dS2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2 θ dϕ2)

Our goal is to solve the Einstein Field Equations (Rµν = 0) for this
metric to find the functions A(r) and B(r).
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Components of the Metric Tensor

For the metric dS2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2 θ dϕ2), the
non-zero metric components are:

g00 = −A(r)

g11 = B(r)

g22 = r2

g33 = r2 sin2 θ

And their inverses (gµν):

g00 = −A(r)−1

g11 = B(r)−1

g22 = r−2

g33 = (r2 sin2 θ)−1
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Connection Coefficients (Γσµν)

Using the formula Γσµν = 1
2g

σρ(gρµ,ν + gρν,µ − gµν,ρ), the non-zero
Christoffel symbols are:

Γ001 =
A′

2A

Γ100 =
A′

2B

Γ111 =
B′

2B

Γ122 = − r
B

Γ133 = − r sin2 θ
B

Γ212 =
1
r

Γ313 =
1
r

Γ323 = cot θ

Γ233 = − sin θ cos θ

(where A′ = dA
dr and B ′ = dB

dr ).
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Calculating Rµν for Vacuum Solution

For a vacuum solution, we set Rµν = 0.

R00 component:

R00 =
A′′

2B
− A′B ′

4B2
− (A′)2

4AB
+

A′

rB

R11 component:

R11 = −A′′

2A
+

A′

4A

(
A′

A
+

B ′

B

)
+

B ′

rB

R22 component:

R22 = 1− 1

B
− r

2B

(
A′

A
− B ′

B

)
R33 component:

R33 = sin2 θ R22.
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Finding A(r) and B(r)

From the equations R00 = 0 and R11 = 0, after algebraic manipulation,
one can derive:

A′

A
+

B ′

B
= 0

Integrating this gives lnA+ lnB = const, or AB = const. Let AB = C0.
So B(r) = C0

A(r) .
Substituting this into the R22 = 0 equation:

1− 1

B
− r

2B

(
A′

A
− B ′

B

)
= 0

1− A

C0
− r

2

A

C0

(
A′

A
− −C0A

′/A2

C0/A

)
= 0

1− A

C0
− r

2

A

C0

(
A′

A
+

A′

A

)
= 0

1− A

C0
− rA′

C0
= 0
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Determining the Constants from Newtonian Limit

C0 = A+ rA′ =
d

dr
(rA)

Integrating this last equation:

C0r + C1 = rA(r) =⇒ A(r) = C0 +
C1

r

And B(r) = 1
1+C1/(C0r)

. Set C0 = 1 (by scaling t).

In the Newtonian limit, we have g00 ≈ −1− 2Φ
c2
, where Φ = −GM

r is the
Newtonian gravitational potential.

So, C1 = −2GM.
The final form of the Schwarzschild Metric is:

dS2 = −
(
1− 2GM

r

)
dt2 +

dr2(
1− 2GM

r

) + r2(dθ2 + sin2 θ dϕ2)

This is the unique static, spherically symmetric, vacuum solution to
Einstein’s field equations.
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Key Characteristics of the Solution

Asymptotically Flat: As r → ∞, the term
(
1− 2GM

r

)
→ 1.

Therefore, the metric approaches the Minkowski metric (flat
spacetime). This means the gravitational field vanishes far from the
source.

Dependence on Mass (M):
The solution depends on only one parameter, M. If M = 0, the metric
is again Minkowski (flat).
This M represents the total mass of the spherically symmetric object.

External Field Description: This solution describes the gravitational
field *outside* any spherically symmetric object, such as a star,
planet, or black hole.
Independence of Mass Distribution (Birkhoff’s Theorem): The
solution depends only on the total mass M, not on how the mass is
distributed within the object (as long as it’s spherically symmetric).

This is a powerful result: any spherically symmetric, vacuum solution
must be the Schwarzschild solution, even if it’s time-dependent.
Implication: A radially pulsating star does not emit gravitational waves
in its vacuum exterior, as its metric must remain static (Schwarzschild).
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Spherical Symmetry and Birkhoff’s Theorem
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Schwarzschild Radius and Singularities

One might notice two values of r where the metric is not
mathematically well-defined:

rs = 2GM (Schwarzschild Radius)
rsing = 0

rs = 2GM (Coordinate Singularity / Event Horizon):
This was initially thought to be a non-physical region.
As r crosses rs , the time and radial coordinates exchange their
signature (e.g., 1− 2GM

r < 0).
rs is a trapping surface or event horizon: once you enter this region,
you cannot go out, even at the speed of light.
It’s a coordinate singularity, meaning no curvature component
becomes infinite here. An observer crossing it might not notice a large
change if M is large.

r = 0 (Curvature Singularity):
At r = 0, Riemann Curvature components become infinite.
This is a true physical singularity.
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Proper Distance and Proper Time

Proper Radial Spatial Distance (S12):
Take dt = 0, dθ = 0, dϕ = 0.

dS2 = dr2

1− 2GM
r

.

The proper distance between two points r1 and r2 is:

S12 =

∫ r2

r1

dr√
1− 2GM

r

Notice how the combination GM
r controls the proper distance. This

distance is larger than the coordinate distance r2 − r1.

Proper Time (dτ):
For an observer at fixed spatial coordinates (dr = 0, dθ = 0, dϕ = 0).
dS2 = −dτ 2 = −

(
1− 2GM

r

)
dt2.

So, dτ =
√
1− 2GM

r dt.

Time Dilation: Proper time gets shorter as r approaches 2GM. At
r = 2GM, time appears to stop for an outside observer (dτ → 0 for
finite dt).
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Spherical Symmetry and Proper Distance
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Frequency Shift in a Gravitational Field

Consider an emitter at fixed spatial coordinates (rE , θE , ϕE ) emitting
a photon, received by an observer at (rR , θR , ϕR).

The emission happens between tE and tE +∆tE , and reception
between tR and tR +∆tR .

Assuming emitter and receiver are static (following time-like
geodesics, dr = dθ = dϕ = 0):

Proper time interval at emitter: ∆τE =
√
1− 2GM

rE
∆tE .

Proper time interval at receiver: ∆τR =
√
1− 2GM

rR
∆tR .

Since the time taken for light to travel between two fixed points is the
same in coordinate time (∆tR = ∆tE ):

∆τR
∆τE

=

√
1− 2GM

rR√
1− 2GM

rE
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Frequency Shift in a Gravitational Field

Since frequency ν ∝ 1
τ :

νR
νE

=

√
1− 2GM

rE√
1− 2GM

rR

For a receiver at rR = ∞ (far away) and an emitter at rE = r :

νR =

√
1− 2GM

r
νE

Redshift: If rE < rR , then νR < νE , meaning the frequency is shifted
to red (lower frequency).

Extreme Redshift: As the signal is emitted from r = rs = 2GM, the
frequency νR → 0, meaning the signal effectively disappears.
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Classical Orbits in a Central Force

For a particle moving in a central force (e.g., gravitational field), the
energy E is:

E =
1

2
ṙ2 +

l2

2r2
+ U(r)

where l is the angular momentum, and U(r) is the potential energy.

For Newtonian gravity, U(r) = −GM
r (assuming unit mass for the

particle).

The Newtonian Effective Potential is:

V
(N)
eff = −GM

r
+

l2

2r2

The radial equation of motion is ṙ = ±
√

2(E − V
(N)
eff ).

The shape of the orbit ϕ(r) is found by integrating:

ϕ(r) =

∫
(l/r2)√

2(E − V
(N)
eff )

dr
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Energy and Angular Momentum

Newtonian orbits are conic sections: Hyperbola (E > 0), Parabola
(E = 0), Ellipse (Vmin < E < 0), Circle (E = Vmin).

For a test particle in Schwarzschild spacetime, the Lagrangian is
L =

√
−gµν ẋµẋν .

From Euler-Lagrange equations, symmetries (Killing vectors) lead to
conserved quantities:

Energy (E): Due to time-translation symmetry (∂L∂t = 0).

E = −
(
1− 2GM

r

)
dt

dτ

(Here, dτ is proper time). This is E = −g00u
0.

Angular Momentum (l): Due to azimuthal symmetry ( ∂L∂ϕ = 0).

l = r2 sin2 θ
dϕ

dτ

For equatorial orbits (θ = π/2), this simplifies to l = r2 dϕ
dτ .
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Energy and Angular Momentum

The normalization condition for the 4-velocity uµ = dxµ

dτ is
uµu

µ = −1:

−1 = −
(
1− 2GM

r

)(
dt

dτ

)2

+

(
1− 2GM

r

)−1( dr

dτ

)2

+r2
(
dθ

dτ

)2

+

+r2 sin2 θ
(
dϕ
dτ

)2
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Equation of Motion and GR Effective Potential

For equatorial orbits (θ = π/2, so dθ/dτ = 0), substituting the
conserved quantities (E and l) into the 4-velocity normalization
condition, we can rearrange to get an energy-like equation:

E 2 =

(
dr

dτ

)2

+

(
l2

r2
+ 1

)(
1− 2GM

r

)
This can be written in the form 1

2

(
dr
dτ

)2
+ V

(GR)
eff (r) = E2−1

2 = E ,
where E is constant.

The General Relativistic Effective Potential is:

V
(GR)
eff (r) = −GM

r
+

l2

2r2
− GMl2

r3

Comparison with Newtonian: The GR effective potential has an
additional attractive term −GMl2

r3
, which is proportional to 1/r3. This

term becomes significant at small radii and leads to important new
phenomena.
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Equation of Motion and GR Effective Potential

Figure: Different values for l/m=4.5,4.0,3.46,3.0
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Impact of the 1/r 3 Term

The 1/r3 term in V
(GR)
eff causes the potential to drop more steeply at

small r compared to the Newtonian case.

This leads to:

A maximum in the potential at small radii, corresponding to unstable
circular orbits.
A minimum at larger radii, corresponding to stable circular orbits.
For very small r , the potential plunges to −∞, indicating that particles
eventually fall into the singularity.

Figure illustrates the different types of orbits based on the energy E
relative to the effective potential.

Circular Orbits: Occur at extrema of Veff .
Bound Precessing Orbits: Energy between minimum and maximum,
leads to non-closed elliptical-like orbits that precess.
Scattering Orbits: Energy above the maximum, particles approach
and then recede, but are deflected.
Plunging Orbits: Energy below the minimum, particles fall directly
into the central mass.
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GR Effective Potential: Different Orbits
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Conditions and Properties

Circular orbits occur when the energy E is equal to a minimum or

maximum of the effective potential (V
(GR)
eff ).

At these points, ṙ = 0, so E = V
(GR)
eff . Also,

dV
(GR)
eff
dr = 0.

Solving
dV

(GR)
eff
dr = 0 for r (for circular orbits) yields:

r =
l2

2GM
± 1

2

√
l4

(GM)2
− 12l2

This equation has two solutions if l2/(GM)2 > 12:

The plus sign corresponds to a stable circular orbit (minimum of
potential).
The minus sign corresponds to an unstable circular orbit (maximum of
potential).

The innermost stable circular orbit (ISCO) is at r = 6GM. Orbits
inside this radius are unstable.
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Kepler’s Laws in General Relativity

The angular velocity (Ω) of a particle in a circular orbit, as seen by a
distant observer (for θ = π/2), is:

Ω =
dϕ

dt
=

l

r2

(
1− 2GM

r

)
1

E

Using the relationship between E , l , and r for circular orbits, this
simplifies to:

Ω =

√
GM

r3

This is precisely Kepler’s Third Law from Newtonian gravity! It
shows that for circular orbits, the orbital period is the same as in
Newtonian gravity, even though the underlying mechanics are
different due to spacetime curvature.

The period P is:

P =
2π

Ω

Adel Awad Schwarzschild Spacetime and Relativistic Orbits July 13, 2025 25 / 25


	Schwarzschild Spacetime
	Properties of Schwarzschild Spacetime
	Relativistic Orbits

