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Special Relativity: The Foundation

Core Principles:
1 Constant Speed of Light: The speed of light in a vacuum (c) is

constant in all inertial reference frames (IRF).
2 Relativity Principle: The laws of physics have the same form in all

inertial reference frames.

Implications: Space and time are not absolute but are intertwined
into a single entity called spacetime. Time is relative, space is relative
and mass is energy.
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Special Relativity: Lorentz Transformations

Figure: Two inertial frames: Σ‘ is moving relative to Σ
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Lorentz Transformations

Consider two IRFs, Σ and Σ′, where Σ′ moves with uniform velocity
v⃗ = v x̂ relative to Σ. The relations between coordinates are

ct ′ = γ(ct − β x)

x ′ = γ(x − β ct)

y ′ = y

z ′ = z

Where β = v
c and γ = (1− β2)−1/2 (Lorentz factor).

Matrix Form (x ′µ = Λµ
νx

ν):
ct ′

x ′

y ′

z ′

 =


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z


Here, xµ ≡ (ct, x , y , z) is a 4-vector (using ct for time component for
consistent units).
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The Spacetime Interval
A Quantity Unchanged by Lorentz Transformations

Lorentz transformations leave the following quantity invariant:

−c2t2 + x2 + y2 + z2 = −c2t ′2 + x ′2 + y ′2 + z ′2 = S2

The nature of this interval classifies event relationships:

S2 < 0: Time-like interval.
Temporal separation > spatial separation.
Events are causally connected (v < c). An object can travel between
them.

S2 = 0: Null-like interval.
Events are connected by a light ray (v = c).

S2 > 0: Space-like interval.
Spatial separation > temporal separation.
Events are not causally connected (v > c would be required).
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Special Relativity: Light Cone

Figure: timelike, spacelike and lightlike intervals
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Spacetime Four-Vector

Concept: In Special Relativity, space and time are unified into a
single four-dimensional entity called spacetime. Events are points in
this spacetime.

Position Four-Vector (xµ): Combines the time coordinate
(multiplied by c) and the three spatial coordinates into a single
vector.

xµ = (x0, x1, x2, x3) = (ct, x , y , z)
Where µ is an index ranging from 0 to 3.

Lorentz Invariance: The ”length” or ”interval” between two events
in spacetime is invariant (the same for all inertial observers), even
though individual space and time components change.

(∆s)2 = −(c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 (Minkowski metric)

Differential Operator: ∂µ = (∂0, ∂1, ∂2, ∂3) = ( ∂
∂t ,

∂
∂x ,

∂
∂y ,

∂
∂z ).

Also, ∂µ ∂
µ = −∂0

2 + ∂1
2 + ∂2

2 + ∂3
2 = − ∂2

∂t2
+ ∂2

∂x2
+ ∂2

∂y2 +
∂2

∂z2
.
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Four-Momentum

Concept: Just as space and time are unified, energy and momentum
are also combined into a single four-vector in Special Relativity.

Momentum Four-Vector (pµ): Combines the relativistic energy
(divided by c) and the three spatial momentum components.

pµ = (p0, p1, p2, p3) = (E/c , px , py , pz)
Where E = γmc2 is the relativistic energy and p = γmv is the
relativistic momentum.

Lorentz Invariance: The ”length squared” of the four-momentum
vector is also invariant and related to the rest mass of the particle:

−(p0)2 + (p1)2 + (p2)2 + (p3)2 = −(E/c)2 + |p|2 = −(mc)2

This leads directly to the famous mass-energy equivalence
E 2 = (pc)2 + (mc2)2.

Significance: Writing down laws of physics using 4-vectors or scalar
ensures that the physics is covariant under Lorentz transformations.
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Maxwell’s Equations and Relativity

The Challenge: Maxwell’s equations were inherently consistent with
the second postulate of special relativity (constant speed of light).
However, their form was not obviously invariant under Galilean
transformations, implying a preferred reference frame (the aether).

Einstein’s Insight: Special Relativity showed that Maxwell’s
equations are already relativistically correct. The problem was with
Newtonian mechanics, not with electromagnetism.

The Unification: Special Relativity provided the framework to show
that electric and magnetic fields are not independent entities but are
two aspects of a single electromagnetic field, whose appearance
depends on the observer’s frame of reference.
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Introducing the Electromagnetic Field Tensor

Need for Covariant Form: To express Maxwell’s equations in a way
that is explicitly invariant under Lorentz transformations, we use
tensor notation. This makes the relativistic nature of the equations
transparent.

We introduce a four-potential Aµ = (ϕ/c ,A) and a 2nd rank
anti-symmetric tensor Fµν = ∂µAν − ∂νAµ.

Electromagnetic Field Tensor (Fµν): It combines the electric field (E)
and magnetic field (B) into a single mathematical object.

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0
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Maxwell’s Equations in Covariant Form

Two Tensor Equations: The four original Maxwell’s equations can
be elegantly expressed as two tensor equations:

1 First Pair (Homogeneous Equations): Describes the absence of
magnetic monopoles and Faraday’s law of induction.

∂λFµν + ∂µFνλ + ∂νFλµ = 0

2 Second Pair (Inhomogeneous Equations): Describes Gauss’s law
and Ampere-Maxwell’s law.

∂µF
µν = µ0J

ν

Jν : Four-current density vector (cρ, J).
µ0: Permeability of free space.

Significance: These covariant forms explicitly demonstrate the
Lorentz invariance of Maxwell’s equations, confirming their
consistency with Special Relativity.
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Inertial vs. Gravitational Mass

Inertial Mass (mI ): Defined by Newton’s F = mIa. Resistance to
acceleration.

Gravitational Mass (mG ): Defined by Newton’s FG = mG
MGGN

r2
.

Source of, or response to, gravitational field.

Empirical Fact: mI = mG . This leads to gravitational acceleration
aG = GNMG

r2
being independent of the object’s mass or composition.

Key Insight: Gravity is ”blind” to the physical content of any object.
This suggests gravity might be a manifestation of spacetime geometry
rather than a force since all objects are affected in the same way.
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Gravity as a spacetime curvature

Figure: Gravitational acceleration does not depend on the mass of the falling
object!
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Einstein’s Elevator Experiment

An observer in a windowless elevator cannot distinguish between:

Being in a uniformly accelerating rocket in deep space.
Being at rest in a uniform gravitational field.

Similarly, free-falling in a gravitational field is locally indistinguishable
from being in deep space (weightlessness).

Conclusion (Equivalence Principle): Uniform acceleration is locally
equivalent to a uniform gravitational field.

Consequence: Gravity affects the very fabric of spacetime, causing it
to bend or curve. This curvature dictates the paths objects take,
replacing the classical ”force” of gravity.
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Equivalence Principle
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Special Relativity: Lorentz Transformations

Figure: If uniform acceleration affects light gravity must affect it in the same way!
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Why Tensors?

General Relativity describes gravity in general (arbitrary) reference
frames, not just inertial ones (like SR).

We need mathematical quantities whose transformation laws are
well-defined under general coordinate transformations:
xµ ≡ (x0, x1, x2, x3) −→ x ′µ ≡ (x ′0, x ′1, x ′2, x ′3).

Unlike SR’s linear Lorentz transformations (A′µ = Λµ
νA

ν), GR uses
non-linear transformations where derivatives like ∂x ′µ

∂xν become crucial.

Definition: A tensor is a geometric object that transforms in a
well-defined way under coordinate transformations.
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Types of Tensors

1 Rank (0,0) Tensor (Scalar): A quantity invariant under coordinate
transformations.

ϕ′(x ′) = ϕ(x)

Examples: Spacetime interval, mass, temperature.

2 Rank (1,0) Tensor (Contravariant Vector): Transforms like
coordinates (dxµ).

A′µ =
∂x ′µ

∂xν
Aν

Examples: 4-position, 4-velocity.

3 Rank (0,1) Tensor (Covariant Vector): Transforms like gradients
( ∂
∂xµ ).

A′
ν =

∂xµ

∂x ′ν
Aµ

Examples: Gradient of a scalar field, 4-momentum with lower index.
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Types of Tensors

General Rank (k, l) Tensor: k upper (contravariant) indices, l lower
(covariant) indices.

T ′µ1...µk
ν1...νl

=

(
∂x ′µ1

∂xα1
· · · ∂x

′µk

∂xαk

)(
∂xβ1

∂x ′ν1
· · · ∂x

βl

∂x ′νl

)
Tα1...αk
β1...βl
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Properties of Tensors

Contraction: Summing over one contravariant and one covariant
index of a tensor reduces its rank by 2. Example: Contraction of A′µ

and B ′
µ forms a scalar:

A′
µB

′µ =

(
∂xα

∂x ′µ
Aα

)(
∂x ′µ

∂xβ
Bβ

)
=

∂xα

∂xβ
AαB

β = δαβAαB
β = AαB

α

Symmetric and Anti-symmetric Tensors:
Symmetric: Tαβ = Tβα

Anti-symmetric: Tαβ = −Tβα

Decomposition: Any tensor Bµν can be uniquely decomposed into
symmetric and anti-symmetric parts:

Bµν = B(µν) + B[µν]

where B(µν) =
1
2(Bµν + Bνµ) and B[µν] =

1
2(Bµν − Bνµ).
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The Fundamental Role of gµν

The metric tensor (gµν) is central to General Relativity.

It defines infinitesimal distances between any two points in curved
spacetime. It is a generalization of the Pythagorean theorem.

The square of an infinitesimal spacetime interval dS2:

dS2 = gµνdx
µdxν = g00(dx

0)2 + g11(dx
1)2 + 2g01dx

0dx1 + g22(dx
2)2 + ...

In flat spacetime, gµν reduces to the Minkowski metric
ηµν = diag(−1, 1, 1, 1) (using (−,+,+,+) signature).

Raising and Lowering Indices: The metric tensor and its inverse (gµν)
are used to transform between covariant and contravariant forms of
tensors:

Lowering: Aµ = gµνA
ν

Raising: Aµ = gµνAν

Example: gναT
µα = Tµ

ν
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The Problem with Partial Derivatives

Partial derivatives of scalars (ϕ) are tensors: ∂ϕ′

∂x ′µ = ∂ϕ
∂xν

∂xν

∂x ′µ .

However, the partial derivative of a vector Aµ(x) does not transform
as a tensor:

∂A′µ

∂x ′ν
=

∂x ′µ

∂xα
∂xβ

∂x ′ν
∂Aα

∂xβ
+

∂2x ′µ

∂x ′ν∂xα
Aα

The second term, involving second partial derivatives of the
coordinate transformation, prevents it from being a tensor. This
highlights that basis vectors change in curved spacetime.
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Covariant Derivative

Consider a vector V = V µêµ. Its total variation δV includes changes in
components and changes in basis vectors:

δV = δV µêµ + V µδêµ

The change in basis vectors can be expressed using Christoffel symbols:

∂êµ
∂xν

= Γαµν êα

Substituting this into the derivative of V with respect to xβ:

DβV =

(
∂V α

∂xβ
+ ΓαµνV

µ ∂x
ν

∂xβ

)
êα =

(
∂V α

∂xβ
+ ΓαµβV

µ

)
êα

The term in parentheses is precisely the definition of the covariant
derivative ∇βV

α. It accounts for the non-Euclidean nature of parallel
transporting a vector in curved space.
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Covariant Derivative

To define differentiation that yields a tensor in curved spacetime, we
introduce the covariant derivative, ∇ν .

For a contravariant vector Aµ:

∇νA
µ = ∂νA

µ + ΓµανA
α

For a covariant vector Aµ:

∇νAµ = ∂νAµ − ΓαµνAα

Christoffel Symbol (Γσµν): Not a tensor, but represents how basis vectors
change in curved space. It is calculated from the metric tensor:

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν)

A crucial property: ∇αgµν = 0 (metric is covariantly constant).
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Generalizing Straight Lines to Curved Spacetime

In Euclidean space, a straight line is the shortest path between two
points, and its tangent vector does not change direction.

A geodesic is the generalization of a straight line to curved spaces or
spacetimes.

It is the curve of extremal (minimum or maximum) length (interval)
between two points.

Equivalently, it’s the path along which a particle moves when only
acted upon by gravity (i.e., its 4-velocity is parallel transported along
its path).

3D Curve Example: A curve X (s) = X (s)êx + Y (s)êy + Z (s)êz has a
tangent vector t = dx

ds .
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The Geodesic Equation

From Parallel Transport: For a geodesic, the covariant derivative of the
tangent vector tα = dxα

ds along the curve must be zero (or proportional to
itself for a non-affine parameter).

d2xα

ds2
+ Γαµν

dxµ

ds

dxν

ds
= λ(s)

(
dxα

ds

)
If we can find a parameter s ′ such that λ(s ′) = 0, it’s called an affine
parameter (e.g., proper time for massive particles). The equation
becomes:

d2xα

ds2
+ Γαµν

dxµ

ds

dxν

ds
= 0

This is the geodesic equation.

From Variational Principle (Euler-Lagrange): Consider a free particle
with Lagrangian L = 1

2gµν
dxµ

ds
dxν

ds . Applying the Euler-Lagrange equations
d
ds

(
∂L
∂ẋµ

)
− ∂L

∂xµ = 0 yields the same geodesic equation:

ẍµ + Γµαβ ẋ
αẋβ = 0
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Relativistic Kinematics and Charge Conservation

4-Velocity (uµ): For a massive particle, in its rest frame, time is
measured by proper time τ . The spacetime interval is
dS2 = −dτ2 = ηµνdx

µdxν .

−1 = ηµν

(
dxµ

dτ

)(
dxν

dτ

)
The 4-velocity is uµ = dxµ

dτ . Its components are uµ ≡ (γ, γv i ).

4-Current (Jµ): Generalizes charge density and current to spacetime.

Classical continuity equation: ∂ρ
∂t +∇ · J = 0.

Relativistic charge density: ρ = ρ0γ (where ρ0 is rest charge density).
4-current: Jµ ≡ (ρ0γ, ρ0γv) = ρ0u

µ (using c = 1 in u0 for proper
units).
Covariant continuity equation: ∂µJ

µ = 0. This implies charge
conservation.
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Energy and Momentum Distribution

For matter particles with rest mass m0, the rest mass density is
ρ0 = m0n.

The distribution of energy and momentum in spacetime is described
by the Stress-Energy Tensor (or Energy-Momentum Tensor), Tµν .

For a simple collection of dust particles (no pressure):

Tµν = ρ0u
µuν

Components and Physical Interpretation:
T 00 = ρ0(u

0)2 = ρ0γ
2: Energy/mass density.

T 0i = ρ0u
0ui = ρ0γu

i : Energy flux in i-direction (or mass current).
T i0 = ρ0u

iu0 = ρ0γu
i : Momentum density in i-direction (or energy

flux).
T ij = ρ0u

iuj : Momentum flux (stress or pressure).
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Perfect Fluid Stress-Energy Tensor

For a perfect fluid (isotropic, no viscosity, no heat conduction) with
energy density ρ and isotropic pressure P:

Tµν = (ρ+ P)uµuν + ηµνP (in SR)

In curved spacetime, the flat metric ηµν is replaced by the spacetime
metric gµν :

Tµν = (ρ+ P)uµuν + gµνP (in GR)

Conservation of Energy and Momentum: In GR, this is expressed
by the covariant divergence of the stress-energy tensor being zero:
∇µT

µν = 0.
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Connecting to Classical Gravity

Classical Gravity (Newtonian):
Poisson’s equation (field equation): ∇2ϕ = 4πGρ.

Newton’s second law (test particle equation): d2x i

dt2 = − ∂ϕ
∂x i .

In GR, Newton’s second law for a test particle should emerge from
the geodesic equation in the following limits:

Weak field: gµν = ηµν + hµν (hµν is small).

Non-relativistic: Particle velocities v ≪ c , so dx i

dτ ≪ dx0

dτ ≃ c .

Static: ∂gµν

∂x0 = 0.

The geodesic equation: d2xµ

dτ2
+ Γµαβ

dxα

dτ
dxβ

dτ = 0. In the weak-field,
non-relativistic, static limit, the dominant term is for α = β = 0:

d2xµ

dτ2
+ Γµ00

(
dx0

dτ

)2

= 0
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From Geodesics to Potential

Since dx0

dτ ≈ c , we have d2xµ

dτ2
+ c2Γµ00 = 0.

Evaluating Γµ00:

Γµ00 =
1

2
gµα(∂0gα0 + ∂0g0α − ∂αg00) = −1

2
gµα∂g00

∂xα

Using gµα ≈ ηµα and g00 = η00 + h00 = −1 + h00:

Γµ00 ≈ −1

2
ηµα

∂h00
∂xα

For µ = i (spatial component):

d2x i

dτ2
=

1

2
c2

∂h00
∂x i

Comparing with Newton’s second law (d
2x i

dt2
= − ∂ϕ

∂x i
, with dτ ≈ dt):

h00 = −2ϕ

c2
=⇒ g00 = −1− 2ϕ

c2

Adel Awad CTP-BUE and Ain Shams U. Introduction to General Relativity July 10, 2025 32 / 41



From Poisson’s Equation to a Tensor Form

Substitute g00 into Poisson’s equation ∇2ϕ = 4πGρ:

−c2

2
∇2g00 = 4πGρ =

4πG

c2
T00

∇2g00 = −8πG

c4
T00

This suggests a generalization for a full covariant field equation:

∇2gµν = −8πG

c4
Tµν

However, this is not correct because ∇αgµν = 0 (covariant derivative of
metric is zero). The left side would be zero, but Tµν is generally non-zero.

Guiding Principle for EFE: We need an equation of the form
Xµν = KTµν such that ∇µXµν = 0 because ∇µTµν = 0 (conservation of
energy-momentum). This is analogous to ∂µF

µν = −Jν in EM leading to
∂νJ

ν = 0.
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Detecting Curvature: Parallel Transport

How do we know if space is intrinsically curved, not just appearing so
due to coordinates?

Flat Space (e.g., 2D plane): If you parallel transport a vector along
a closed loop, it returns to its starting point with its original
orientation.

Curved Space (e.g., 2D sphere): If you parallel transport a vector
along a closed loop on a sphere, it will generally return to its starting
point with a different orientation. The change in orientation
quantifies the curvature enclosed by the loop.

This procedure defines the Riemann Curvature Tensor, which
measures the amount of this ”change upon parallel transport”.
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Transporting a Vector in a Closed Loop

Figure: Transporting a vector around a closed loop as a measure of curvature
tensor
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Transporting a Vector in a Closed Loop

The change in a vector δV ρ after parallel transport around an
infinitesimal parallelogram defined by vectors Aµ and Bν :

δV ρ = Rρ
σµνV

σAµBν

Figure: The change occurs in the vector V as a result of taking it around this
loop is proportional to curvature tensor
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Definition of the Riemann Curvature Tensor

The Riemann Curvature Tensor (also known as the Riemann-Christoffel
tensor) is defined in terms of Christoffel symbols (Γ) and their derivatives:

Rσ
µνλ = ∂νΓ

σ
µλ − ∂λΓ

σ
µν + ΓσανΓ

α
µλ − ΓσαλΓ

α
µν

In 4-dimensions, this tensor has 44 = 256 components, but due to its
symmetries, only 20 are independent.

Properties of the Riemann Tensor:
1 Anti-symmetry:

In first two indices: Rσµνλ = −Rµσνλ

In last two indices: Rσµνλ = −Rσµλν

2 Symmetry: Rσµνλ = Rνλσµ (interchange of first pair and second pair)

3 Cyclic Identity (First Bianchi Identity):

Rσµνλ + Rσλµν + Rσνλµ = 0

Adel Awad CTP-BUE and Ain Shams U. Introduction to General Relativity July 10, 2025 37 / 41



Key Identities and Contractions

Bianchi Identity (Second Bianchi Identity): The covariant derivative of
the Riemann tensor satisfies:

∇λRµναβ +∇βRµνλα +∇αRµνβλ = 0

This identity is crucial for the mathematical consistency of General
Relativity.

Contractions of the Riemann Tensor:

Ricci Tensor (Rµν): A symmetric rank (0,2) tensor, obtained by
contracting the first and third indices of the Riemann tensor.

Rµν = Rα
µαν
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Curvature Tensor: Bianchi Identity and Contractions

Ricci Scalar (R): A scalar, obtained by contracting the Ricci tensor
with the metric tensor.

R = gµνRµν

Contraction of Bianchi Identity: This important contraction leads
directly to the conservation law for the Einstein tensor:

∇µ(Rµν −
1

2
gµνR) = 0

This ensures that the left side of the Einstein Field Equations (the
Einstein Tensor) is covariantly conserved, matching the covariant
conservation of the stress-energy tensor on the right side.
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Einstein’s Masterpiece

After years of effort, in late 1915, Einstein proposed the correct field
equations:

Rµν −
1

2
gµνR =

8πG

c4
Tµν

Where:

Gµν = Rµν − 1
2gµνR is the Einstein Tensor.

Rµν is the Ricci Curvature Tensor.

R = gµνRµν is the Ricci Scalar.

gµν is the Metric Tensor.

Tµν is the Stress-Energy Tensor.

G is Newton’s gravitational constant, c is the speed of light.

Consistency: The covariant divergence of the Einstein Tensor is
identically zero (∇µGµν = 0) due to the Bianchi identities, ensuring
consistency with energy-momentum conservation (∇µTµν = 0).
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Alternative Form and Implications

Alternative form of the EFE: Contracting the EFE with gµν :

gµν(Rµν −
1

2
gµνR) = gµν 8πG

c4
Tµν

R − 1

2
(4)R =

8πG

c4
T =⇒ −R =

8πG

c4
T

Substituting R back into the original EFE gives:

Rµν =
8πG

c4
(Tµν −

1

2
gµνT )

This form is often very useful.

Vacuum Einstein Equations: When there is no source of matter or
energy (Tµν = 0), the equations simplify to:

Rµν = 0

Important Note: Rµν = 0 does not imply that the spacetime is flat
(Rµναβ = 0). For example, Schwarzschild solution has Rµν = 0 but its
spacetime is highly curved.
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