Introduction to Cosmology

Adel Awad

July 10, 2025

- One can observe that the Universe as we see it is:
 - Isotropic: Looks the same in every direction (no preferred direction).
 - **Homogeneous:** Looks the same in every point or region (no preferred point/region).
- These two assumptions are fundamental in modern cosmology.

The Metric of an Isotropic and Homogeneous Universe

 The assumptions of isotropy and homogeneity lead to a specific form of the spacetime metric:

$$dS^2 = -dt^2 + a^2(t)d\sigma^2$$

- There are no cross terms such as dtdx.
- a(t) is the scale factor, which depends on time.

1

- $d\sigma^2$ is the spatial metric on a 3-dimensional hypersurface Σ .
- The entire spacetime can be viewed as $R \times \Sigma$ (Time (1D) \times Space (3D)).

- We found that the spatial metric dσ² has the form γ_{ij}(x_i)dxⁱdx^j (where x_i are dimensionless coordinates).
- In spherical coordinates, $d\sigma^2$ is given by:

$$d\sigma^2 = rac{dar{r}^2}{1-kar{r}^2}+ar{r}^2(d heta^2+\sin^2 heta\,\,d\phi^2)$$

- Here, k is the curvature parameter:
 - k = 0: flat space.
 - k = -1: hyperbolic (open) 3-dimensional surface.
 - k = +1: spherical (closed) 3-dimensional surface.

Possible Spacial Metrics

Figure: Spacial metrics with negative, positive and zero curvature!

• This metric is the standard form of the Robertson-Walker metric:

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - \kappa r^{2}} + r^{2} d\Omega^{2} \right]$$

• In order to solve Einstein Field Equations for this metric we must start with calculating connection components.

Christoffel Symbols for RW Metric

For the Robertson-Walker metric, the non-vanishing Christoffel symbols (Connection Components) are:

• $\Gamma_{11}^0 = \frac{a\dot{a}}{1 - Kr^2}$ • $\Gamma^0_{22} = a\dot{a}r^2$ • $\Gamma^0_{33} = a\dot{a}r^2\sin^2\theta$ • $\Gamma_{01}^1 = \Gamma_{02}^2 = \Gamma_{03}^3 = \frac{\dot{a}}{2}$ • $\Gamma_{11}^1 = \frac{Kr}{1-Kr^2}$ • $\Gamma_{22}^1 = -r(1 - Kr^2)$ • $\Gamma_{33}^1 = -r(1 - Kr^2) \sin^2 \theta$ • $\Gamma_{12}^2 = \Gamma_{21}^2 = \frac{1}{2}$ • $\Gamma_{12}^3 = \Gamma_{21}^3 = \frac{1}{\pi}$ • $\Gamma_{22}^3 = \Gamma_{32}^3 = \cot \theta$ • $\Gamma_{33}^2 = -\sin\theta\cos\theta$

The non-vanishing components of the Ricci Tensor $(R_{\mu\nu})$ for the Robertson-Walker metric are:

•
$$R_{00} = -3\frac{\ddot{a}}{a}$$

• $R_{11} = \frac{a\ddot{a}+2\dot{a}^2+2K}{1-Kr^2}$
• $R_{22} = r^2(a\ddot{a}+2\dot{a}^2+2K)$
• $R_{33} = r^2(a\ddot{a}+2\dot{a}^2+2K)\sin^2\theta$

Modeling Matter Content

- The energy-momentum conservation is given by $\nabla_{\mu}T^{\mu\nu} = 0$.
- In the case of isotropy and homogeneity, matter is represented by a perfect fluid.
- The stress-energy tensor for a perfect fluid is:

$$T_{\mu\nu} = (\rho + P)U_{\mu}U_{\nu} + Pg_{\mu\nu}$$

- Here, U^μ = (1,0,0,0) is the 4-velocity of any material point of this perfect fluid (in the comoving frame).
- The components of the stress-energy tensor in the comoving frame are:

$$T^{\mu}_{\nu} = \mathsf{diag}(-
ho, P, P, P)$$

• The trace of the stress-energy tensor is $T = T^{\mu}_{\mu} = 3P - \rho$.

Connecting Curvature to Matter Content

The Einstein Field Equations are given by:

$$R_{\mu\nu}=8\pi G(T_{\mu\nu}-\frac{1}{2}g_{\mu\nu}T)$$

• 00-component of EFE:

$$R_{00} = 8\pi G (T_{00} - \frac{1}{2}g_{00}T)$$

Substituting $R_{00} = -3\frac{\ddot{a}}{a}$ and $T_{00} = \rho$, $g_{00} = -1$:
 $-3\frac{\ddot{a}}{a} = 8\pi G (\rho - \frac{1}{2}[-\rho + 3P])$
 $-3\frac{\ddot{a}}{a} = 8\pi G (\frac{3}{2}\rho + \frac{3}{2}P)$
 $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P)$

This is the **second Friedmann equation** (also known as the acceleration equation).

Adel Awad

The First Friedmann Equation

• 22-component of EFE:

$$R_{22} = 8\pi G (T_{22} - \frac{1}{2}g_{22}T)$$

Substituting $R_{22} = r^2 (a\ddot{a} + 2\dot{a}^2 + 2K)$ and $T_{22} = Pg_{22}$:
 $r^2 (a\ddot{a} + 2\dot{a}^2 + 2K) = 8\pi G (Pg_{22} - \frac{1}{2}g_{22}(3P - \rho))$

Dividing by r^2 and g_{22} , and simplifying:

$$\ddot{a}\ddot{a} + 2\dot{a}^{2} + 2K = 8\pi G(\frac{1}{2}P + \frac{1}{2}\rho)$$
$$\ddot{a}\dot{a} + 2\left(\frac{\dot{a}}{a}\right)^{2} + 2\frac{K}{a^{2}} = 4\pi G(\rho + P)$$

Using the acceleration equation $(\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P))$, we get: first Friedmann equation:

$$H^2 + \frac{K}{a^2} = \frac{8\pi G}{3}\rho$$

Adel Awad

Introduction to Cosmology

- The energy-momentum conservation equation is $\nabla_{\mu}T^{\mu\nu} = 0$.
- Considering the $\nu = 0$ component: $\nabla_{\mu} T_0^{\mu} = 0$.

$$\nabla_{\mu} T_{0}^{\mu} = \partial_{\mu} T_{0}^{\mu} + \Gamma_{\mu\lambda}^{\mu} T_{0}^{\lambda} - \Gamma_{0\mu}^{\lambda} T_{\lambda}^{\mu}$$

• After detailed calculation, this leads to the fluid equation:

$$\dot{
ho} = -3H(
ho + P)$$

This is a crucial equation describing how energy density changes with the expansion of the universe.

The Fundamental Equations of Cosmology

The two independent cosmological equations are:

• First Friedmann Equation:

$$H^2 + \frac{K}{a^2} = \frac{8\pi G}{3}\rho$$

② Fluid Equation (Conservation of Energy):

$$\dot{\rho} = -3H(\rho + P)$$

- We have 2 equations with 3 unknown functions: a(t), $\rho(t)$, and P(t).
- Therefore, we need an additional equation, an equation of state, relating ρ and P.

Relating Pressure and Density

• For the equation of state we use a simple relation: P=wp where w is a constant.

Dominant Matter/Energy Types:

- At any given time period, a certain type of matter/energy can dominate the Universe's behavior.
- Early Universe (Radiation Dominated):
 - Extremely hot, kinetic energies of particles much larger than their rest mass $(E = \sqrt{p^2 + m^2} \approx p)$.
 - These are ultra-relativistic or relativistic particles.
 - From statistical mechanics, a gas of relativistic particles has an energy density/pressure relation of $P = \frac{1}{3}\rho$.
 - So, for radiation, $w = \frac{1}{3}$.

• Later Universe (Matter Dominated):

- As the universe expands, it cools, and kinetic energies become smaller.
- Particles become non-relativistic ($E \approx m$).
- For non-relativistic matter (or dust), w = 0.

How Density Changes with Expansion

Using $P = w\rho$ in the fluid equation $\dot{\rho} = -3H(\rho + P)$. For a flat Universe (K = 0), $H^2 = \frac{8\pi G}{3}\rho$ (consistent with WMAP observations).

$$rac{d
ho}{dt} = -3rac{\dot{a}}{a}
ho(1+w)$$

Integrating this equation:

$$\int \frac{d\rho}{\rho} = -3(1+w) \int \frac{da}{a}$$
$$\ln \rho = -3(1+w) \ln a + C$$
$$\rho(t) = \rho_0 a(t)^{-3(1+w)}$$

where ρ_0 is the density at time t_0 when $a(t_0) = 1$. • For Radiation $(w = \frac{1}{3})$:

$$\rho(t) = \rho_0 a(t)^{-4}$$

• For **Matter (Dust)** (*w* = 0):

$$\rho(t) = \rho_0 a(t)^{-3}$$

15/17

Cosmological Densities

From the first Friedmann equation $(H^2 + \frac{K}{a^2} = \frac{8\pi G}{3}\rho)$, we can define the **critical density** ρ_c for a flat universe (K = 0):

$$H^2 = \frac{8\pi G}{3}\rho_c \implies \rho_c = \frac{3H^2}{8\pi G}$$

Dividing the Friedmann equation by H^2 :

$$1 + \frac{K}{a^2 H^2} = \frac{8\pi G}{3H^2}\rho$$

We can define **density parameters** $\Omega_i = \rho_i / \rho_c$:

$$1 = \Omega_r + \Omega_m + \Omega_k$$

Where Ω_r for radiation, Ω_m for matter, and $\Omega_k = -K/(a^2H^2)$ for curvature. At t_0 (today, with $a(t_0) = 1$ and $H = H_0$):

$$1 = \frac{\rho_{r,0}}{\rho_{c,0}} + \frac{\rho_{m,0}}{\rho_{c,0}} + \frac{\rho_{\Lambda,0}}{\rho_{c,0}} = \Omega_{r,0} + \Omega_{m,0} + \Omega_{\Lambda,0}$$

(Assuming $\Omega_{\Lambda,0}$ for dark energy, related to a constant $P = -\rho$).

Fate of the Universe and Critical Density

The first Friedmann equation:

$$H^2 + \frac{K}{a^2} = \frac{8\pi G}{3}\rho$$

We can write K in terms of current values:

$$K = \left(\frac{8\pi G}{3}\rho - H^2\right)a^2$$

• If
$$\frac{8\pi G\rho}{3} = H^2$$
 at any time, then $K = 0$.

• If K = 0 at any point in time, it will remain zero forever.

- This means if the density is exactly the critical density, the universe is flat and remains flat.
- If $\rho > \rho_c$, then K > 0 (closed universe).
- If $\rho < \rho_c$, then K < 0 (open universe).