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The Universe as We Observe It

@ One can observe that the Universe as we see it is:

o Isotropic: Looks the same in every direction (no preferred direction).
o Homogeneous: Looks the same in every point or region (no preferred
point/region).

@ These two assumptions are fundamental in modern cosmology.
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The Metric of an Isotropic and Homogeneous Universe

The assumptions of isotropy and homogeneity lead to a specific form
of the spacetime metric:

dS? = —dt? + a*(t)do?

There are no cross terms such as dtdx.
a(t) is the scale factor, which depends on time.

do? is the spatial metric on a 3-dimensional hypersurface ¥.

The entire spacetime can be viewed as R x ¥ (Time (1D) x Space

(3D)).

Adel Awad Introduction to Cosmology July 10, 2025 3/17



The Spatial Metric do?

o We found that the spatial metric do? has the form ~y;(x;)dx’dx/
(where x; are dimensionless coordinates).

@ In spherical coordinates, do? is given by:

dr?
1— kr

do? = ——— +7%(d6® +sin® 0 d¢?)
@ Here, k is the curvature parameter:

e k =0: flat space.
e k = —1: hyperbolic (open) 3-dimensional surface.
o k = +1: spherical (closed) 3-dimensional surface.
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Possible Spacial Metrics

Figure: Spacial metrics with negative, positive and zero curvature!
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Standardizing the Metric Form

@ This metric is the standard form of the Robertson-Walker metric:

2

2 2
W"FI’ dQ

ds? = —dt® + a*(t)

@ In order to solve Einstein Field Equations for this metric we must
start with calculating connection components.
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Christoffel Symbols for RW Metric

For the Robertson-Walker metric, the non-vanishing Christoffel symbols
(Connection Components) are:
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Ricci Tensor for RW Metric

The non-vanishing components of the Ricci Tensor (R, ) for the
Robertson-Walker metric are:

o Roo = —32
§424242K
o Ry = 22725555

o Ry = r?(ad +2a% + 2K)
o R33 = r?(ad + 24% + 2K)sin 6
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Modeling Matter Content

@ The energy-momentum conservation is given by V, T#” = 0.

@ In the case of isotropy and homogeneity, matter is represented by a
perfect fluid.

@ The stress-energy tensor for a perfect fluid is:
T,uu = (P+ P)U,uUz/ + Pgm/

@ Here, U* =(1,0,0,0) is the 4-velocity of any material point of this
perfect fluid (in the comoving frame).

@ The components of the stress-energy tensor in the comoving frame
are:
T} = diag(—p, P, P, P)

@ The trace of the stress-energy tensor is T = T}/ =3P — p.
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Connecting Curvature to Matter Content

The Einstein Field Equations are given by:

1
R, =81G(T, — 58 T)

@ 00-component of EFE:
1
Roo = 87G(Too — 5800 T)
Substituting Ryp = —37 and Too = p, goo = —1L:

~32 = 87G(p— 3[-p+3F)

3
—3*—87TG( 5Pt P)

a ArG

-=—— 3P

; 5 (p+3P)
This is the second Friedmann equation (also known as the
acceleration equation).
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The First Friedmann Equation
@ 22-component of EFE:
Ry = 87 G( T2 — %g22 T)
Substituting Rap = r?(ad 4 24% + 2K) and Ty = Pgo:
r’(ad + 23° + 2K) = 87 G(Pgas — %g22(3P -9)
Dividing by r? and g», and simplifying:
ad +23° +2K = 87TG(%P + %p)

5 aA\? K
+2<> +2— = 4nG(p+ P)
a a a

Using the acceleration equation (2 = —%(p + 3P)), we get: first
Friedmann equation:
K 8nG
H2 4 o=
T2 3
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Deriving the Fluid Equation

@ The energy-momentum conservation equation is V, TH" = 0.

o Considering the v = 0 component: V, T§' = 0.
A by
VMTM = auTél + I_ZATO - FOMT;\L
o After detailed calculation, this leads to the fluid equation:
p=—3H(p+ P)

This is a crucial equation describing how energy density changes with
the expansion of the universe.
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The Fundamental Equations of Cosmology

The two independent cosmological equations are:

© First Friedmann Equation:

@ Fluid Equation (Conservation of Energy):
p=—3H(p+ P)

@ We have 2 equations with 3 unknown functions: a(t), p(t), and P(t).

@ Therefore, we need an additional equation, an equation of state,
relating p and P.
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Relating Pressure and Density

@ For the equation of state we use a simple relation: P=wp where w is
a constant.

Dominant Matter/Energy Types:

e At any given time period, a certain type of matter/energy can
dominate the Universe's behavior.
e Early Universe (Radiation Dominated):
e Extremely hot, kinetic energies of particles much larger than their rest
mass (E = \/p? + m?> = p).
e These are ultra-relativistic or relativistic particles.
o From statistical mechanics, a gas of relativistic particles has an energy
. . 1
densﬁy/pre;sstljre relation of P = 3p.
e So, for radiation, w = 3.
o Later Universe (Matter Dominated):
o As the universe expands, it cools, and kinetic energies become smaller.
e Particles become non-relativistic (E =~ m).
o For non-relativistic matter (or dust), w = 0.
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How Density Changes with Expansion

Using P = wp in the fluid equation p = —3H(p + P). For a flat Universe
(K =0), H? = 82¢ (consistent with WMAP observations).

dp a
£ 3%
it SPL+w)

Integrating this equation:
d d.
/ P 30+w) [ 2
p a
Inp=-3(1+w)lna+C
p(t) = poa(t) 3+

where pg is the density at time to when a(tp) = 1.
e For Radiation (w = 1):
p(t) = poa(t)™

e For Matter (Dust) (w = 0):
p(t) = poa(t)?
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Cosmological Densities

From the first Friedmann equation (H? + a—KQ = %p), we can define the
critical density p. for a flat universe (K = 0):
2
H? = %ﬂc = pPc = ;TLG
Dividing the Friedmann equation by H?:
14 K _ 87TG
2H2 ~ 312"

We can define density parameters Q; = p;/p:
1=Q,+Qmn+ Q

Where Q, for radiation, Q,, for matter, and Q, = —K/(a?H?) for

curvature. At ty (today, with a(tp) =1 and H = Hp):
1— Pro 4 Pm,0 4 PA0
Pc,0 Pc,0 Pc,0

(Assuming Qp o for dark energy, related to a constant P = —p).
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Fate of the Universe and Critical Density
The first Friedmann equation:

a2 3

We can write K in terms of current values:

K= (87;G,0— H2> a

o If @ = H? at any time, then K = 0.

If K =0 at any point in time, it will remain zero forever.

This means if the density is exactly the critical density, the universe is
flat and remains flat.

If p > pc, then K > 0 (closed universe).

If p < pc, then K < 0 (open universe).
Introduction to Cosmology July 10, 2025 17 /17



	Introduction to Cosmology
	The Robertson-Walker Metric
	Connection Components and Ricci Tensor
	Stress-Energy Tensor and Field Equations
	Cosmological Equations and Equation of State

