

Alexandria Quantum Computing Group (AleQCG)

U

Day1: Introduction to Quantum Computing

Ahmed Younes

Professor of Quantum Computing Faculty of Computer Science & Engineering, Alamein International University Founder and Leader of Alexandria Quantum Computing (AleQCG)

Representative of the Arab States in IYQ2025 SC

Centre for Theoretical Physics

5th Summer School and Internship Programme at CTP CTP - BUE (7-17 July 2025)

TECHNOLOGY

Google's New Quantum Chip (Willow) Completes 10-Septillion-Year Tasks In Five Minutes

Google has built a new quantum computing chip (Willow) measuring 4cm squared that takes just five minutes to complete tasks that would take 10,000,000,000,000,000,000,000 years for some of the world's fastest conventional computers to complete. That's 10 septillion years.

f

×

in

 \sim

Matthew Giannelis ast updated: December 10, 2024 1:20 pm

🖻 Share 🧜 🗙 in 🔤 🔗 🖨

On Monday Google unveiled a ground-breaking quantum computing chip, "Willow," capable SHARE of solving problems in just five minutes that would take the world's fastest conventional supercomputers a staggering 10 septillion years—a number far beyond the age of the known universe.

Ten septillion years is a timescale that is longer than the universe is old, and the findings demonstrate for the first time that quantum computers are able to complete tasks beyond classical computers.

Tech Articles

•Septillion: 10²⁴ (1,000,000,000,000,000,000,000,000)

System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Cray OS, HPE D0E/SC/Oak Ridge National Laboratory	9,066,176	1,353.00	2,055.72	24,607

United States

Computing

China achieves quantum supremacy claim with new chip 1 quadrillion times faster than the most powerful supercomputers

By Alan Bradley published March 13, 2025

This new superconducting prototype quantum processor achieved benchmarking results to rival Google's new Willow QPU.

🚯 🐼 🚳 🔞 🍞 🖸 📪 Comments (0)

When you purchase through links on our site, we may earn an affiliate commission. <u>Here's how it</u> works.

The latest iteration of Zuchongzhi includes 105 transmon qubits — devices made from metals like tantalum, niobium, and aluminum that have reduced sensitivity to noise. (Image credit: D. Gao et al. [2])

•Quadrillion: 10¹⁵ (1,000,000,000,000,000)

El Capitan has 11,039,616 cores

https://fractal.ai/quantum-computing-is-here-is-your-business-ready/

Quantum Machine Learning

- Al and machine learning are growing fields.
- Quantum machine learning is the integration of quantum algorithms within machine learning programs.
- The most common use of the term refers to machine learning algorithms for the analysis of classical data executed on a quantum computer.

Drug Design & Development

The costs and timelines to develop effective medicines using traditional drug discovery methods are much too high, exacerbated by outrageous failure rates.

https://drug-dev.com/cloud-computing-using-quantum-molecular-design-cloud-computing-to-improve-the-accuracy-success-probability-of-drug-discovery/

Financial Modelling

Weather Forecasting

 Currently, the process of analyzing weather conditions by traditional computers can sometimes take longer than the weather itself does to change.

https://analyticsindiamag.com/top-applications-of-quantum-computing-everyone-should-know-about/ https://www.rigetti.com/news/rigetti-enhances-predictive-weather-modeling-with-quantum-machine-learning

Logistics Optimization

- Improved data analysis and robust modelling will indeed enable a wide range of industries to optimize their logistics and scheduling workflows associated with their supply-chain management.
- The operating models need to continuously calculate and recalculate optimal routes of traffic management, fleet operations, air traffic control, freight and distribution, and that could have a severe impact on applications.

Parts Collection from Parts Suppliers →

Parts Consolidation at Transit Warehouses →

Delivery to Vehicle Assembly Plants

https://www.fujitsu.com/global/about/resources/news/press-releases/2020/0910-02.html

Computational Chemistry

 The number of quantum states, even in a tiniest of a molecule, is extremely vast, and therefore difficult for conventional computing memory to process that.

Activities of companies in quantum

Quantum sensors

Quantum communication

Quantum computing hardware

Quantum algorithms and applications

Facilitating technologies

Quantum Companies Sector Distribution

@QURECA Ltd. 2025, all rights reserved

Quantum Companies per Region

Quantum Jobs Market Size

ESTIMATE JOB GROWTH BY 2040

We need to train NOW the *workforce of the present* and the *workforce of the future*

@QURECA Ltd. 2025, all rights reserved

PhotonicsViews, 17: 34-38, 2020. https://doi.org/10.1002/phvs.202000044

https://qubitsok.com/

History

- The true computer we know nowadays came to life when J. Barden, W. Brattain and W. Shockley invented Transistor in 1947.
- To invent new families of computers with more capabilities, it was necessary to increase the number of transistors used on approx. the same physical space by decreasing the size of the components. (Miniaturization)
- Moore's Law, 1965:

"The number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented."

Transistor

Miniaturization

Moore's Law

Intel CPUs 2009- 2021

CPU Name	Cores/Threads	Clock	Cache
Core i9-11980HK	8/16	2.6 GHz	24 MB
Core i9-11900H	8/16	2.5 GHz	24 MB
Core i7-11800H	8/16	2.4 GHz	24 MB
Core i5-11400H	6/12	2.7 GHz	12 MB
Core i5-11260H	6/12	2.6 GHz	12 MB
Core i7-11370H	4/8	3.3 GHz	12 MB
Core i5-11300H	4/8	3.1 GHz	12 MB
Core i7-1185G7	4/8	3.0 GHz	12 MB
Core i7-1165G7	4/8	2.8 GHz	12 MB
Core i5-1135G7	4/8	2.4 GHz	8 MB
Core i3-1125G4	4/8	2.0 GHz	8 MB
Core i3-1115G4	2/4	3.0 GHz	6 MB
Core i7-1160G7	4/8	1,2 GHz	12 MB
Core i5-1130G7	4/8	1.1 GHz	8 MB
Core i3-1120G4	4/8	1.1 GHz	8 MB
Core i3-1110G4	2/4	1.8 GHz	6 MB

What is a Quantum Computer?

 A quantum computer is a machine that performs calculations based on the laws of quantum mechanics, which is the behavior of particles at the sub-atomic level.

In 1982, Richard P. Feynman proposed if a computer operating with the laws of quantum mechanics will perform more efficient.

Public-key Cryptography is no Longer Safe!

Shor's Algorithm, 1995:
 Onteger Factorization Problem:

 On classical computers the best is the Multiple Polynomial Quad Find p and q. and runs in
 This problem is the

$$O\left(\exp\left(\left(\frac{64}{9}\right)^{1/3}\left(\ln N\right)^{1/3}\right)\right)$$

This problem is the main problem used to secure online transactions (http vs https)

Given integer *n*

such that $n=p^*q$

prime numbers.

where *p*,*q* are

It means that this algorithm scales exp (http vs https) the number of the digits *N* of the integer number to be factorized.

Factorization Problem RSA – 129 *

RSA-129 =

11438162575788886766923577997614661201 021829672124236256256184293 57069352457338978305971235639587050589 89075147599290026879543541 [n]

34905295108476509491478496199038981334 17764638493387843990820577 [p]

× 32769132993266709549961988190834461413 177642967992942539798288533 [q]

Public-key Cryptography - 2

SECURITY

- For instance, in 1994 a 129 digit number (known as RSA-129) was successfully factored using this algorithm on approximately 1600 workstations scattered around the world, the entire factorization took 8 months.
- It needs 800,000 years to factor 250 digit number and 10²⁵ years (significantly longer than the age of the universe) to factor 1,000 digit number.

Factorization Problem RSA - 2048 *

RSA-2048 = 6564391212010397122822 120720357

Cash Prize Offered: 200,000 USD

Public-key Cryptography - 3

 Shor's algorithm taking the advantage of *quantum parallelism* by using a quantum analogue of the Fourier transform runs in

$$O\Big(\big(\log N\big)^{2+\varepsilon}\Big)$$

where ε is small.

It means a 1,000 digit number requires about 20 min on a quantum computer.

Quantum Search Engine

- L. Grover, 1996:
 - Describes a very efficient algorithm for database search.
 - ○Classical search algorithm for unsorted list of *n* records requires *O*(*N*).
 ○His algorithms runs in *O*(√*N*).

Quantum Search Engine

• L. Grover, 1996:

 Describes an efficient algorithm for database search.

• Classical search algorithm for unsorted list of *n* records requires O(N).

• His algorithms runs in $O(\sqrt{N})$.

Grover diffusion operator

Repeat $O(\sqrt{N})$ times

Quantum Computer Science

- Quantum Circuits.
- Quantum Algorithms.
- Quantum Complexity Theory.
- Quantum Neural Network.
- Quantum Pattern Recognition.
- Quantum Relational Databases.
- Quantum Images Recognition.
- Quantum Genetic Information.
- Quantum Cryptography.
- Quantum Programming Languages.
- Quantum Route Finding.
- Quantum Machine Learning.
- Quantum Image Processing.
- Quantum NLP.
- Quantum Origin cybersecurity.

Universities

Quantum Algorithms Vs. Classical Algorithms

Algorithm Name	Speedup	
Quantum Fourier Transform, Simon's Algorithm, Quantum Phase Estimation, HHL Algorithm, Quantum Principal Component Analysis, Quantum Support Vector Machine, Quantum Linear Systems Algorithm, Quantum Eigenvalue Estimation, Quantum Matrix Inversion, Quantum Singular Value Transformation	Exponential	
Quantum Walks	Polynomial	
Grover's Search, Quantum Counting, Quantum Amplitude Amplification, Quantum Amplitude Estimation,Quantum Minimum Finding, Quantum Mean Estimation	Quadratic	
Factoring, Discrete-log, Pell's Equation	Superpolynomial	

Basics of Quantum Computing

Quantum Data (qubit)

A quantum bit of data is represented by a single atom that is in one of two states denoted by |0> and |1>. A single bit of this form is known as a *qubit*

Superposition - 1

Prob($|0\rangle$) = $|a|^2 = a.a *$ Prob($|1\rangle$) = $|b|^2 = b.b *$ $|a|^2 + |b|^2 = 1$

 $(a|0\rangle+b|1\rangle)$

Superposition - 2

$|0\rangle \left(a|0\rangle+b|1\rangle\right)$ $a|00\rangle+b|01\rangle$

$\begin{pmatrix} a_0 | 0 \rangle + b_0 | 1 \rangle \end{pmatrix} \otimes \begin{pmatrix} a_1 | 0 \rangle + b_1 | 1 \rangle \end{pmatrix}$ $a_0 a_1 | 00 \rangle + a_0 b_1 | 01 \rangle + b_0 a_1 | 10 \rangle + b_0 b_1 | 11 \rangle$ $\begin{pmatrix} \alpha_0 | 00 \rangle + \alpha_1 | 01 \rangle + \alpha_2 | 10 \rangle + \alpha_3 | 11 \rangle \end{pmatrix}$

Representation of Quantum Data -Superposition

A single qubit can be forced into a *superposition* of the two states denoted by the addition of the state vectors:

Where *a* and *b* are complex numbers and $|a|^2 + |b|^2 = 1$

A qubit in superposition is in both of the states |1> and |0> at the same time

Bloch Sphere

Physical Qubit (Trapped Ions)

A physical implementation of a qubit could use the two energy levels of an atom. An excited state representing $|1\rangle$ and a ground state representing $|0\rangle$.

Trapped lons

Superconducting Qubits

Light Polarization

Photon polarization as a qubit

Physical support	Name	Information support	0 angle	1 angle	
	Polarization encoding	Polarization of light	Horizontal	Vertical	
Photon	Number of photons	Fock state	Vacuum	Single photon state	
	Time-bin encoding	Time of arrival	Early	Late	
Coherent state of light	Squeezed light	Quadrature	Amplitude-squeezed state	Phase-squeezed state	
Electrone	Electronic spin	Spin	Up	Down	
Liections	Electron number	Charge	No electron	One electron	
Nucleus	Nuclear spin addressed through NMR	Spin	Up	Down	
Optical lattices	Atomic spin	Spin	Up	Down	
	Superconducting charge qubit	Charge	Uncharged superconducting island (Q=0)	Charged superconducting island (Q=2 <i>e</i> , one extra Cooper pair)	
Josephson junction	Superconducting flux qubit	Current	Clockwise current	Counterclockwise current	
	Superconducting phase qubit	Energy	Ground state	First excited state	
Singly charged quantum dot pair	Electron localization	Charge	Electron on left dot	Electron on right dot	
Quantum dot	Dot spin	Spin	Down	Up	
Gapped topological system	Non-abelian anyons	Braiding of Excitations	Depends on specific topological system	Depends on specific topological system	

Essential Mathematical Topics

Math. Topic	Quantum Computing Topics
Linear Algebra:	Dirac notation, quantum gate is unitary matrix, quantum data is a normalized vector.
Differential Equations:	Adiabatic quantum computing, quantum annealing.
Statistics/Probability Theory:	Quantum computers are probabilistic devices, quantum measurement, quantum amplitude amplifications.
Complex Analysis:	Amplitudes of quantum states are complex numbers.
Information Theory:	Quantum information theory, quantum noise, quantum error correction, quantum compression entropy.

Essential Mathematical Topics (cont.)

Math. Topic	Quantum Computing Topics
Topology:	Topological quantum computing.
Group Theory:	Stabilizer codes, Quantum error Correction, reversible computing, permutation group, universal quantum gates.
Graph Theory:	Graph state quantum computing, quantum walk on a graph.
Algebraic Geometry:	Quantum annealing.
Boolean Algebra:	Quantum Boolean circuits, quantum logic, quantum gates.

Essential Mathematical Topics (cont.)

Math. Topic	Quantum Computing Topics
Coding Theory:	Quantum error correcting codes.
Number Theory:	Quantum cryptography and Shor's Algorithm.
Differential Geometry:	Quantum information theory and quantum gravity.
Formal Language Theory:	Quantum computation models, quantum complexity, quantum computability, quantum Turing machines.
Fractional Calculus:	Fractional quantum calculus, generalization of quantum mechanics, fractional Schrödinger equation.

How does the use of qubits affect computation?

Classical Computation

Data unit bit

Valid states:

x = '0' or '1'

Quantum Computation

Data unit: qubit $\bigcirc =|1\rangle$ $\bigcirc =|0\rangle$ Valid states:

 $|\psi\rangle=c_1|0\rangle+c_2|1\rangle$

How does the use of qubits affect computation?

Classical Computation

Operations: logical Valid operations:

Quantum Computation

<u>Operations:</u> unitary Valid operations:

~

$$\sigma_{X} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\sigma_{y} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \qquad H_{d} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

2-qubit CNOT =
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- Computation in quantum systems must be reversible, so that no loss in energy during the computation process.
- Quantum gates are represented as square matrices U that satisfy the unitary condition:

$$U^{\dagger} = U^{-1}$$
$$U^{\dagger}U = UU^{\dagger} = I.$$

Single qubit gates:

Quantum Circuit Model

A QUANTUM MODEL OF COMPUTATION

Tracing a Quantum Circuit

• What is the truth table?

Two qubit gates

• The Controlled-NOT Gate (*C_{not}*)

 If C=0 then no change
 Else If C=1 then T is flipped

Diagonal representation,

$$C_{not} = |0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes X.$$

$$C_{not} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Input	Output
$ 00\rangle$	00 angle
$ 01\rangle$	$ 01\rangle$
$ 10\rangle$	$ 11\rangle$
$ 11\rangle$	$ 10\rangle$

The C_{not} gate truth table.

Examples

Swap Circuit:

1	0	0	0
0	0	1	0
0	1	0	0
0	0	0	1

Three qubit gates

Toffoli gate :

Is considered to be universal...

Setting C=1 will convert it to classical *NAND* gate which is universal from classical point of view.

	Input			Output				
	0	$ 00\rangle$	>	$ 000\rangle$				
	0	$ 01\rangle$	>	0	$ 01\rangle$			
	0	$ 10\rangle$	>	0	$10\rangle$			
	0	$ 11\rangle$	>	0	$ 11\rangle$			
	1	.00)	>	1	$\overline{00}$			
	1	$ 01\rangle$	>	1	$\overline{01}$			
	1	$ 10\rangle$)	1	$ 11\rangle$			
	$ 111\rangle$		>	$ 110\rangle$				
		tı	rutl	n ta	ble			
[1	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	0	1	0	0	0	0	
0	0	0	0	1	0	0	0	
0	0	0	0	0	1	0	0	
0	0	0	0	0	0	0	1	
0	0	0	0	0	0	1	0	

Controlled Swap Circuit (Fredkin Gate)

Two-qubits Boolean Circuits

Boolean Quantum Circuits $f = \overline{x_0}x_1 + x_0x_2$

x_0	x_I	x_2	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Quantum circuit

1-bit Half Adder

Let $|c\rangle = |1\rangle$, $|x\rangle = |0\rangle$, $|y\rangle = |1\rangle$ Then $|s\rangle = |0\rangle$, $|c'\rangle = |1\rangle$

Entanglement $|\alpha_2|10\rangle + \alpha_3|11\rangle \rightarrow$ $\alpha_0 |00\rangle + \alpha_2 |10\rangle \rightarrow$ $(\alpha_0|00\rangle + \alpha_1|01\rangle + \alpha_2|10\rangle + \alpha_3|11\rangle) \rightarrow$

 $\alpha_0 |00\rangle + \alpha_3 |11\rangle \rightarrow$

Hidden correlation between qubits - spooky action at a distance

Communication with Entanglement

Quantum Computing in Market

A bit of the action

In the race to build a quantum computer, companies are pursuing many types of quantum bits, or qubits, each with its own strengths and weaknesses.

Superconducting loops

A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into superposition states.

I ongevity (seconds)

Trapped ions

Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.

Silicon quantum dots

These "artificial atoms" are made by adding an electron to a small piece of pure silicon. Microwaves control the electron's quantum state.

Topological qubits

Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures. Their braided paths can encode quantum information.

Diamond vacancies

A nitrogen atom and a vacancy add an electron to a diamond lattice. Its quantum spin state, along with those of nearby carbon nuclei, can be controlled with light.

0.	00005	>1000	0.03	N/A	10
Lo 99	ogic success rate 9.4%	99.9%	~99%	N/A	99.2%
Ni 9	umber entangled	14	2	N/A	6
Co	ompany support				
Go	oogle, IBM, Quantum Circuits	ionQ	Intel	Microsoft, Bell Labs	Quantum Diamond Technologies
8	Pros				
	Fast working. Build on existing semiconductor industry.	Very stable. Highest achieved gate fidelities.	Stable. Build on existing semiconductor industry.	Greatly reduce errors.	Can operate at room temperature.
0	Cons				
	Collapse easily and must be kept cold.	Slow operation. Many lasers are needed.	Only a few entangled. Must be kept cold.	Existence not yet confirmed.	Difficult to entangle.

Note: Longevity is the record coherence time for a single gubit superposition state, logic success rate is the highest reported gate fidelity for logic operations on two gubits, and number entangled is the maximum number of gubits entangled and capable of performing two-gubit operations.

Microwaves

Superconductor Quantum Computers

IBM

Google Al About Stories Research Education Tools Principles Blog

IBM Q

https://www.research.ibm.com/ibm-q/

https://www.rigetti.com/

https://quantumai.google/

https://originqc.com.cn/en/

Photonics Quantum Computers

https://www.xanadu.ai/

https://psiquantum.com/

Ion Traps Quantum Computers

Honeywell

Honeywell Forge Industries Company News Careers Safety Shop

About Us / Quantum / Our Computer

https://www.honeywell.com/us/e n/company/quantum/quantumcomputer

High Performance Quantum Computing

https://www.oxionics.com/

Bandin QUANTUM	Q ≣
Quantum Projects Research Highlights Publications	f ¥ 🛛 🗖 🖉 🌶
Quantum Information Sciences	
World Class Research in Quantum Information Sciences	

https://www.sandia.gov/quantum/

Adiabatic Quantum Computers

COMPANY 🗸

TECHNOLOGY 🗸

COMPUTING

NEWS 🗸

CAREERS

RESOURCES CONTACT

Welcome to the Future

The Quantum Computing Era Has Begun.

www.dwavesys.com/

Topological Quantum Computers

https://www.microsoft.com/en-us/quantum

Neutral Atoms Quantum Computers

🐉 Pasqal

01

Quantum computing has transcended the realm of theory.

It is now a viable technology with a track record of powering transformation. Advances in neutralatom technology are now translating into tomorrow's "everyday applications." Businesses everywhere must harness this infinite potential to step into the next phase of their development.

Contact us

Our ambition is to breakthrough the limits of computing by leading the delivery of state-ofthe-art quantum computing. At Pasqal, we have built much of the foundation that allows us to guide you through this new era. Have a look at some of the case uses that make use of the power of quantum computing. Let quantum computing find concrete solutions to your realworld challenges.

Desktop Quantum Computer

2 Qubits

Gemini is the world's first commercially available desktop quantum computer, launched by SpinQ. Gemini contains two qubits and is based on Nuclear Magnetic Resonance (NMR). It provides a comprehensive solution for quantum computing education. Customized quantum algorithm circuit designing and programming are also supported on Gemini. Hardware-level pulse designing and engineering are available as well. Gemini provides a very friendly platform for non-specialists who aim to learn quantum computing basics and quantum programing quickly.

Triangulum is a 3-qubit desktop NMR quantum computer newly launched by SpinQ. It provides a comprehensive solution for quantum computing education.

More Quantum Computers

TU Delft University and Intel

https://www.tudelft.nl/en/2015/tudelft/qutech-quantum-institute-entersinto-collaboration-with-intel

QuTech

https://qutech.nl/

Quantum Brilliance

https://guantumbrilliance.com/

Qilimanjaro https://www.gilimanjaro.tech/

Open-Source Quantum Software Tools

- IBM Quantum Experience (QISKIT)
- Microsoft Quantum Development Kit (Q#)
- <u>Cirq</u> (Google Al Quantum Team)
- PennyLane and Strawberry Fields from Xanadu
- Intel Quantum Simulator
- CAS-Alibaba Quantum Computing Laboratory
- ProjectQ
- Open Controls from Q-CTRL
- <u>Silq</u>
- <u>Tequila</u>
- Quantum User Interface (QUI)
- <u>Quirk</u>
- <u>QuEST</u>
- QuTiP: Quantum Toolbox in Python
Quantum Key Distribution

Eavesdropping detection:

$$P_d = 1 - \left(rac{3}{4}
ight)^n$$

 $P_d=0.999999999$ Alice and Bob need to compare n=72 key bits.

- ▶ Error rate < E max \rightarrow No eavesdropping
- ► Error rate > E max → Eavesdropping or the channel is noisy.

Alice and Bob should then discard the whole key and start over.

Post-Quantum

📗 Private Con

- Founded 2
- Ounited King

Post-Quantum e authenticity and the future. Prod authentication, deterrence; PQ Chat - Ultra-secu - Future-proof e

Single Quantum

Private Company

- 🖞 Founded date unknown
- Netherlands

Wij leveren betrouwbare en gebruiksvriendelijke complete detectiesystemen gebaseerd op 'superconducting nanowire single detectors' (SNSPDs), die gevoelig golflengtegebied van UV tot het r infrarood. Wij zijn het eerste bed

INCUBATOR / ACCELERATOR BACK

- GOVERNMENT GRANT
- http://www.singlequant

PQSECURE TECHNOLOGIES, I

Founde Lattice

0

n/a

USA

GOVER

http:/

- 🌆 🛛 Private Company
- 🛗 Founded date unknown

Estonia

The era of quantum computer is already in front of me. In the cryptography used in the current cryptographic currency, it is broken by the quantum computer, and its cryptographic currency becomes useless. In the quantum era, we developed a cryptographic currency that can be safely used. By using the quantum

http://www.lattice.com/

phy Companies

NuCrypt LLC

- Private Company
 - Founded 2003
 -) USA

tical encryption mmunications and roduct, ced with quantum r, and high-speed

.net

CUBE

0

CU

vel

Au

COI

vel

otł

C(

0

鼬 Private Company

雦 Founded date unknown

AET, Inc.

畾 n/a

Founded date unknown

Crypta Consultancy

Private Company 畾

- 龠 Founded 2015
- 0 United Kingdom

Crypta Consultancy is a cybersecurity advisory service in Cybersecurity, Cryptography and Quantum Cryptography. We specialises in Automotive, Financial Services, Oil & Gas, Online Gaming & Gambling, Print & Digital, Media, Research, Shipping, Logistics & Transportation, Telecommunications, and

Quantum Resistant Ledger

Private

畾

曲

0

The ORL wi

is designed

both classic

It uses a di

bitcoin (and

based digit

resistant. 1

(III)

httr

Nano-Meta Found Technologies Unkno

鼬 Private Company

Founded

USA

Nano-Meta T

plasmonics, r

metamateria

technologies.

nanoantenna recording, ult

metasurfaces

GOVERN

SPIN-OF

0

⊞

IdQuantique

- Private Company 鼬
 - 雦 Founded 2003
 - 0 Switzerland
- ID Quantique (IDQ) is the leader in highperformance multi-protocol network encryption based on conventional and quantum technologies. The company provides network security solutions and services to the financial industry, defence and government organizations and other enterprises globally. It

SPIN-OFF

http://www.idguantigue.com/

Founded in 2001, Geneva based startup ID Quantique has taken in around **\$5.6 million** in funding to develop an entire suite of quantum cryptography solutions that are divided into three areas. The first area is quantum random number generators (QRNGs) that can plug into a PCI slot or USB port. You would actually

need 60 of these PCI QRNG devices to equal 1 of the qStream devices from Quintessence Labs we discussed earlier. The second business area of IDQ is photon counting hardware like the appliances seen below:

ID100 VIS BEST DARK COUNT RATE

- Silicon Avalanche Photodiode
- 350-900nm
- Free-Running
- 40ps Timing Resolution
- Low Dark Count Rate <5Hz
- · 35% Quantum Efficiency

PRODUCT DETAILS

Highly Reliable

ID230 NIR BEST DARK COUNT RATE

PRODUCT DETAILS

- InGaAs/InP APD
- 900-1700nm
- Free-Running
- Best dark count rate (<50Hz)
- 200ps Timing Resolution (<100ps on request)
- Single mode or multimode fiber connection

ID110 VIS 100MHZ PHOTON DETECTOR

- · Silicon Avalanche Photodiode
- · 350-900nm
- · Free-Running and Gated
- Adjustable Deadtime
- 200ps Timing Resolution
- · Low Dark Count Rate

PRODUCT DETAILS

25% Quantum Efficiency

ID210 NIR 100MHZ GATED DETECTOR

PRODUCT DETAILS

- InGaAs/InP APD
 - 900-1700nm
 - Gated and Free-Running
 - 100MHz Trigger Rate
 - Lowest Dark Count Rate
 - 30% Quantum Efficiency
- Most Versatile Device

Founded in 2012, Qubitekk has taken in at least **\$2 million** in funding (in additions to various grants) in order to develop a machine-tomachine communication device that can help protect critical

infrastructure like electrical grids or oil pipelines. Their solution works as follows:

bitekk

Controller - Randomly configures switch

Fiber Optic Switch - Routes entangled photons

Founded in 2006, Australian firm Quintessence labs has taken in an **undisclosed** amount of funding to develop an entire suite of quantum security products. In the world of computer programming, and particularly in cryptography, there are many ways to generate a

random number. Present random number generation uses algorithms so that they are not "truly random". Quintessence Labs has built a Quantum Random Number Generator (QRNG) called qStream which can spew forth random numbers at a rate of 1 gigabit per second.

qStream™

Quantum Dense Coding

Liao et al. 2017

BB84 QKD using a satellite link

Chen et al . 2021

TF-QKD

Quantum Science and Technology

100 Years of Quantum Mechanics is just beginning...

Quantum Science and Technology

www.quantum2025.org 100 years of quantum is just the beginning...