

Alexandria Quantum Computing Group (AleQCG)

and Technology

Day 3: Quantum Algorithms

WORLD

z

0

U

σ

Ahmed Younes

Professor of Quantum Computing Faculty of Computer Science & Engineering, Alamein International University Founder and Leader of Alexandria Quantum Computing Group (AleQCG)

Representative of the Arab States in IYQ2025 SC

Centre for Theoretical Physics

5th Summer School and Internship Programme at CTP CTP - BUE (7-17 July 2025)

Outline

- Quantum Parallelism
- Superposition Preparation
- Parallel Evaluation of a function
- Marking Solutions
- Deutsch-Jozsa Algorithm
- Grover's Quantum Search Algorithm

Quantum Parallelism

- Quantum parallelism is a fundamental feature of many quantum algorithms.
- Allows quantum computers to evaluate a function f(x) for many different values of x simultaneously.

Quantum Parallelism

Superposition Preparation

- This procedure can easily be generalized to functions on an arbitrary number of bits, by using a general operation known as the *Hadamard transform*, or sometimes the *Walsh– Hadamard transform*.
- For n = 2, $H^{\otimes 2} |00\rangle$

$$\begin{vmatrix} 0 \\ -H \end{vmatrix} - \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right) \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right) = \frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$

Superposition Preparation

• For n = 3, $H^{\otimes 3} | 000 \rangle$ $|0\rangle - H - (\frac{|0\rangle + |1\rangle}{\sqrt{2}})(\frac{|0\rangle + |1\rangle}{\sqrt{2}})(\frac{|0\rangle + |1\rangle}{\sqrt{2}})(\frac{|0\rangle + |1\rangle}{\sqrt{2}})(\frac{|0\rangle + |1\rangle}{\sqrt{2}})$ $|0\rangle - H - = \frac{|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle + |110\rangle + |111\rangle}{2\sqrt{2}}$

For arbitrary n>0

Boolean Quantum Circuits $f = \overline{x_0}x_1 + x_0x_2$

x_0	x_I	x_2	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Quantum circuit

Parallel Evaluation of f

Tracing the Circuit

$$\begin{split} \psi_{0} &\rangle = |000\rangle \otimes |0\rangle \\ \psi_{1} \rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \otimes |0\rangle \\ &= \left(\frac{|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle + |110\rangle + |111\rangle}{2\sqrt{2}}\right) \otimes |0\rangle \\ &= \left(\frac{|000, 0\rangle + |001, 0\rangle + |010, 0\rangle + |011, 0\rangle + |100, 0\rangle + |101, 0\rangle + |111, 0\rangle}{2\sqrt{2}}\right) \\ \psi_{2} \rangle = \left(\frac{|000, 0\rangle + |001, 0\rangle + |010, 1\rangle + |011, 1\rangle + |100, 0\rangle + |101, 1\rangle + |110, 0\rangle + |111, 1\rangle}{2\sqrt{2}}\right) \\ &= \frac{1}{2\sqrt{2}} \left(|000\rangle + |001\rangle + |100\rangle + |110\rangle\right) \otimes |0\rangle + \frac{1}{2\sqrt{2}} \left(|010\rangle + |011\rangle + |101\rangle + |111\rangle\right) \otimes |1\rangle \end{split}$$

Effect of Entanglement

 If we measure the extra qubit and finds |0>, then the system collapses to

$$\frac{1}{2} (|000\rangle + |001\rangle + |100\rangle + |110\rangle) \otimes |0\rangle$$

 If we measure the extra qubit and finds |1>, then the system collapses to

$$\frac{1}{2} (|010\rangle + |011\rangle + |101\rangle + |111\rangle) \otimes |1\rangle$$

General Form (Marking by Entanglement)

$$\begin{split} |\psi_{0}\rangle &= |0\rangle^{\otimes n} \otimes |0\rangle \\ \|\psi_{1}\rangle &= \left(H^{\otimes n} \otimes I\right) |\psi_{0}\rangle \\ &= \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} |x\rangle \otimes |0\rangle \\ &= U_{f} |\psi_{1}\rangle \\ \end{split}$$
This method is called Marking $= \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} (|x\rangle \otimes |f(x)\rangle)$

Entanglement

Marking the Solutions by Phase Shift

$$\begin{split} |\psi_{0}\rangle &= |000\rangle \otimes |1\rangle \\ |\psi_{1}\rangle &= \left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\ &= \left(\frac{|000\rangle+|001\rangle+|010\rangle+|011\rangle+|100\rangle+|101\rangle+|110\rangle+|111\rangle}{2\sqrt{2}}\right) \otimes \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\ |\psi_{2}\rangle &= \left(\frac{|000\rangle+|001\rangle-|010\rangle-|011\rangle+|100\rangle-|101\rangle+|110\rangle-|111\rangle}{2\sqrt{2}}\right) \otimes \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\ &= \left(\frac{1}{2\sqrt{2}}\left(|000\rangle+|001\rangle+|001\rangle+|100\rangle+|110\rangle\right) - \frac{1}{2\sqrt{2}}\left(|010\rangle+|011\rangle+|101\rangle+|111\rangle\right) \otimes \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\ \end{split}$$

General Form (Marking by Phase Shift)

$$|\psi_{0}\rangle = |0\rangle^{\otimes n}$$

$$|\psi_{1}\rangle = H^{\otimes n} |\psi_{0}\rangle$$

$$= \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} |x\rangle$$

$$|\psi_{2}\rangle = U_{f} |\psi_{1}\rangle$$

$$= \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} (-1)^{f(x)} |x\rangle$$

Deutsch-Jozsa Algorithm

Deutsch-Jozsa (Hyorithm Problem: Given an unknown function f(x) which is promised tobe one of two kinds ;-D fexis constant Vx, fexi=0 ov fexi=1 E fan is balanced, i.e. equalsto es for half in parts and equals to I for half inputs. In classical case, we need $\frac{2^n}{2} + 1$ tests. In quantum case, Using Uf to calculate f (x), we need only one test using quantum parallelism and quantum interference.

Example

x_0	x_I	x_2	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

x_0	x_I	x_2	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Constant Function

Balanced Function

	Let fix) has	n inputs	
The Quantum Circuit	× 107-[H] × 107-[H] × 107-[H] × 107-[H]		<u> </u>
	extra 1, - [H]		<u> </u>
	qubit 11	.,	

Tracing the Algorithm

$$\begin{aligned} |\mathcal{A}_{0}\rangle &= |\mathbf{v}\rangle \otimes |\mathbf{v}\rangle \\ |\mathcal{A}_{1}\rangle &= H^{\otimes n+1} |\mathcal{A}_{0}\rangle \\ &= \frac{1}{\sqrt{2n}} \sum_{x=0}^{N} |\mathbf{x}\rangle \otimes \left(\frac{|\mathbf{v}\rangle - |\mathbf{v}\rangle}{\sqrt{2}}\right) \\ |\mathcal{A}_{2}\rangle &= \mathcal{O}_{p} |\mathcal{A}_{1}\rangle \\ &= \frac{1}{\sqrt{2n}} \sum_{x} (-1) |\mathbf{x}\rangle \otimes \left(\frac{|\mathbf{v}\rangle - |\mathbf{v}\rangle}{\sqrt{2}}\right) \\ &\quad (\text{marking by phase shift, ignore the extra curdor +}) \end{aligned}$$

$$\frac{N^{1} \cdot B}{M} \cdot H^{1} = \frac{1}{\sqrt{2}} (100 + 100)$$

$$H^{1} = \frac{1}{\sqrt{2}} (100 - 100)$$

$$H^{1} \times 1 = \frac{1}{\sqrt{2}} \sum_{\substack{z \in \{-1\} \\ z \in \{-1$$

$$\frac{X=0}{Z=0} = \frac{Z=0}{Z=1} (-1)^{1} (0) = 1072 (107 + 117)$$

$$\frac{Z=1}{Z=1} = (-1)^{1} (17) = 1172 \int_{0}^{1} (107 + 117)$$

$$\frac{x = 1}{2 = 0} \xrightarrow{(-1)^{1}} 100 = 100$$

$$\frac{z = 1}{2 = 1} \xrightarrow{(-1)^{1}} 100 = -100$$

$$(100 - 100)$$

.

$$Ex: H^{(0)}_{1} = \left(\frac{100}{\sqrt{2}}\right) \left(\frac{100}{\sqrt{2}}\right) \left(\frac{100}{\sqrt{2}}\right) \left(\frac{100}{\sqrt{2}}\right)$$

$$= \frac{1}{\sqrt{23}} \left[10007 - 10017 + 10107 - 10107 + 10117\right]$$

$$[101) = 0 + 10007$$

$$1 - 10017$$

$$0 + 10007$$

$$1 - 10017$$

$$0 + 10007$$

$$1 - 10017$$

$$2 + 1001$$

$$1 - 10017$$

$$2 + 1001$$

Now to colculate My $|\mathcal{A}_{3}\rangle = (\mathcal{H}^{\otimes n} \otimes \Sigma) |\mathcal{A}_{2}\rangle = (\mathcal{H}^{\otimes n} \otimes \Sigma) \frac{1}{\sqrt{2^{n}}} \sum_{x} (-1) |x\rangle \otimes (\frac{107 - 117}{\sqrt{2}})$ $=\frac{1}{\sqrt{2^{n}}}\sum_{x}^{f(x)} \underbrace{(-1)}_{x} \underbrace{H(x)}_{y} \otimes \left(\frac{10)-11}{\sqrt{2}}\right)$ 1 2 (-1)127 V2n 2 (-1)127 $= \frac{1}{2^{n}} = \frac{2^{n}-1}{\sum_{x=0}^{n}} = \frac{2^{n}-1}{\sum_{x=0}^{n}} + \frac{2^{n}-1}{\sum_{x=0}^{n}} +$

Apply measurent on the first new bits

$$I \neq F(x)$$
 is constant $f(x) = 0$ $f(x) = 1$
Amplitude $g(0)^{0n}$ is $+1$ $Z_{n} = 1$ $-Z_{2n} = -1$
 $ox - 1$ depends on $f(x)$.
Because 14_{3} is dunit length then it follows that all other amplitude
most be zero.
 $I \neq F(x)$ is bolonced
the pus it ive and negative Contributions to amplitude
 $g(0)^{\otimes n}$ and each other, fearing amplitude zero, and the measure
must yield astate other than $103^{\otimes n}$.

$$E_{X}: f(X) = 1 \quad s_{N} = 2 \quad (constant) \qquad \begin{array}{c} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 &$$

 $\binom{4}{2} = \frac{-1}{2} (1000 \pm 1010 \pm 1100) \pm 1111)$

$$\frac{E \times 1}{(N_{0})^{2} = 100} \frac{F(x_{0}, x_{1}) = x_{0} \otimes 1}{(N_{0}^{2})^{2} = 100} \frac{F(x_{0}, x_{1}) = x_{0} \otimes 1}{(N_{0}^{2})^{2} = 100} \frac{F(x_{0}, x_{0})^{2}}{(100)^{2} + 100$$

Grover's Quantum Search Algorithm

Unstructured Search Problem

Consider an unstructured list *L* of *N* items.

- For simplicity and without loss of generality we will assume that $N = 2^n$ for some positive integer *n*.
- Suppose the items in the list are labelled with the integers {0, 1, ..., N-1}, and consider a function (oracle) *f* which maps an item *i* ∈ *L* to either 0 or 1 according to some properties this item should satisfy, i.e. *f* : *L* → {0, 1}.
- The problem is to find any *i* ∈ *L* such that *f*(*i*) = 1 assuming that such *i* exists in the list.

Classical Searching

• In conventional computers, solving this problem needs O(N/M) calls to the oracle (query), where *M* is the number of items that satisfy the oracle.

- The unstructured search problem can be considered as a general domain for a wide range of applications in computer science, for example:
 - The **database searching problem**, where we are looking for an item in an unsorted list.
 - The **Boolean satisfiability problem**, where we have a Boolean expression with *n* Boolean variables and we are looking for any variable assignment that satisfies this expression.

Quantum Circuit for Grover's algorithm

Grover's Diffusion Operator G

Quantum circuit for the diffusion operator G over n qubits.

Steps

- 1. Prepare a quantum register of n + 1 qubits. The first n qubits all in state |0> and the extra qubit in state |1>.
- 2. Apply the Hadamard gate H on each of the n + 1 qubits in parallel.
- 3. Iterate the following steps q times,
 - i. Apply the oracle U_f .
 - ii. Apply the diffusion operator *G* on the first *n* qubits.
- 4. Measure the first *n* qubits to get the result with probability P_s Grover diffusion operator

Repeat $O(\sqrt{N})$ times

initialization

1st Iteration

2nd Iteration

3rd Iteration

4th Iteration

5th Iteration

Initialization

Marking the Solution

Amplitude Amplification

Inversion about the Mean

Apply the *Diffusion Operator* G on the first n qubits. The diagonal representation of G can take this form

$$G = H^{\otimes n} \left(2 \left| 0 \right\rangle \left\langle 0 \right| - I_n \right) H^{\otimes n},$$

where the vector $|0\rangle$ used is of length $N = 2^n$, and I_n is the identity matrix of size $2^n \times 2^n$. Consider a general system $|\psi\rangle$ of *n*-qubit quantum register:

$$|\psi\rangle = \sum_{j=0}^{N-1} \alpha_j \,|j\rangle.$$

The effect of applying G on $|\psi\rangle$ produces,

$$G |\psi\rangle = \sum_{j=0}^{N-1} \left[-\alpha_j + 2 \langle \alpha \rangle \right] |j\rangle,$$

where, $\langle \alpha \rangle = \frac{1}{N} \sum_{j=0}^{N-1} \alpha_j$ is the mean of the amplitudes of the states in the superposition, i.e. each amplitude α_j will be transformed according to the following relation:

$$\alpha_j \to \left[-\alpha_j + 2\left<\alpha\right>\right].$$

Ex 00 0 107-107-100 117 -—(H} 1~107 1~1,7 1~27 170) = 100) 43) $(\gamma_{1}) = \frac{1}{2} (100) + 101) + 110) + 111)$ $1 \sim Y_{2} = \frac{1}{2} (1007 + 1017 + 1107 - 1117)$ $G: \alpha_j \longrightarrow 2 \langle \alpha \rangle - \alpha_j$ $\langle \prec \rangle = \frac{1}{4} \left(3 \left(\frac{1}{2} \right) + 1 \left(\frac{-1}{2} \right) \right)$ 12:2(1)-(1)=0 = + $-\frac{1}{2}$: 2 $\left(\frac{1}{4}\right)$ - $\left(\frac{1}{2}\right)$ = 1

1007 1017 1107 1117 - ~ -1 $\frac{1}{2}$ $-\frac{1}{2}$ 3 0 $|\mathcal{M}_{3}\rangle = |\mathcal{M}\rangle$ Hint: If the number of solutions is 25% of the search space, Grover's Algorithm will terminate ofter 1: territion with prob of Suc. 100%.

$$\underbrace{E_{X_{1}}}_{1\circ} \xrightarrow{1\circ}_{1\circ} \xrightarrow$$

 $\langle \chi \rangle = \frac{1}{8} \left(7 \left(\frac{1}{2\sqrt{2}} \right) + 1 \left(\frac{-1}{2\sqrt{2}} \right) \right) = \frac{3}{8\sqrt{2}}$ ×j → 2<~> - ~j $\begin{array}{c} \alpha_{ij} \begin{cases} \frac{1}{2\sqrt{2}}: 2\left(\frac{3}{8\sqrt{2}}\right) - \left(\frac{1}{2\sqrt{2}}\right) = \frac{1}{4\sqrt{2}} \quad \text{prob.}\\ \frac{-1}{2\sqrt{2}}: 2\left(\frac{3}{8\sqrt{2}}\right) - \left(\frac{-1}{2\sqrt{2}}\right) = \frac{5}{4\sqrt{2}} \quad \text{prob.}\\ \frac{-1}{2\sqrt{2}}: 2\left(\frac{3}{8\sqrt{2}}\right) - \left(\frac{-1}{2\sqrt{2}}\right) = \frac{5}{4\sqrt{2}} \quad \text{prob.}\\ \frac{-1}{2\sqrt{2}}: 2\sqrt{2}\left(\frac{3}{8\sqrt{2}}\right) - \left(\frac{-1}{2\sqrt{2}}\right) = \frac{5}{4\sqrt{2}} \quad \text{prob.} \end{cases}$

 $\begin{bmatrix}
 1 & \forall_{3} \\
 4 & \forall_{2} \\
 4 & \forall_{2} \\
 4 & \forall_{2} \\
 2 & \forall_{1} & \forall_{1} \\
 2 & \forall_{1} & \forall_{1} \\
 2 & \forall_{1} & \forall_{1} \\
 A & \forall_{1} & \forall_{1} & \forall_{1} \\
 A & \forall_{1} & \forall_{1} & \forall_{1} \\
 A & \forall_{1} & \forall_{1} & \forall_{1} & \forall_{1} & \forall_{1} \\
 A & \forall_{1} &$

$$\langle \ll \rangle = \frac{1}{8} \left(7 \left(\frac{1}{4\sqrt{2}} \right) + 1 \left(\frac{-5}{4\sqrt{2}} \right) \right)$$

$$= \frac{1}{16\sqrt{2}}$$

$$\approx : \left\{ \frac{1}{4\sqrt{2}} \rightarrow 2 \left(\frac{1}{16\sqrt{2}} \right) - \left(\frac{1}{4\sqrt{2}} \right) = -\frac{1}{8\sqrt{2}} \right\}$$

$$= \frac{1}{8\sqrt{2}} \rightarrow 2 \left(\frac{1}{16\sqrt{2}} \right) - \left(\frac{-5}{4\sqrt{2}} \right) = \frac{11}{8\sqrt{2}}$$

$$= \frac{11}{8\sqrt{2}} \left(1000 + -- + 1110 \right) + \frac{11}{8\sqrt{2}} \right)$$

$$= \frac{11}{8\sqrt{2}} \left(1000 + -- + 1110 \right) + \frac{11}{8\sqrt{2}} \right)$$

$$= \frac{11}{8\sqrt{2}} \left(1000 + -- + 1110 \right) + \frac{11}{8\sqrt{2}} \right)$$

$$= \frac{1}{8\sqrt{2}} \left(1000 + -- + 1110 \right) + \frac{11}{8\sqrt{2}} \right)$$

$$= \frac{1}{8\sqrt{2}} \left(1000 + -- + 1110 \right) + \frac{11}{8\sqrt{2}} \right)$$

$$= \frac{1}{8\sqrt{2}} \left(1000 + -- + 1110 \right)$$

Thank you