Physical Cosmology and Galaxies Summer Internship Programme July 2021

Amr El-Zant (CTP, BUE, Cairo)

Useful refs:

- Liddle: Introduction to Cosmology (Focus on Newtonian background cosmic evolution) -Mo, van den Bosch \& White: Galaxy Formation and Evolution (a modern cosmological context) - Ferreira: Lectures on General Relativity and Cosmology (simple intro with essentials) http://wwwastro.physics.ox.ac.uk/~pgf/B3..pdf
- Peacock: Cosmological Physics (Newtonian + GR).
- Peebles: principles of Physical Cosmology (a classic with careful treatment; bit outdated)
- Weinberg: Cosmology (advanced, first chapter, to p 100, quite useful).
- Ryden: Introduction to cosmology (covers a lot at a reasonably simple level)

Casmic Distance Scale

- Earth-Moon ~ I light secand
- Earth-Sun ~ 8 light minutes
- Nearest stars
>~ few light yrs ~ parsec

What is a parsec?

- Useful intro into diameter distance
- Distance at which earth orbit round sun (1 AU) subtends an angle $\boldsymbol{\vartheta}$ of 1 arcsecond

$$
\begin{aligned}
& \text { parsec }=\mathrm{pc} \\
& \mathrm{kpc}=1000 \mathrm{pc} \\
& \mathrm{Mpc}=1000000 \mathrm{pc} \\
& \mathrm{Gpc}=1000000000 \mathrm{pc}
\end{aligned}
$$

The Milky Way Galaxy

Distance from sun to centre ~ 25000 light years (8 kpc) Farthest individual stars seen by naked eye ~ 1000 light years

The (Local) Galaxy Population

Stars + Gas + Dust (+ Dark Matter)

- May be disk or spheroid,; contain lots of gas or little; have active star formation or not. Some have quasars.

Rotational support

Younger stars with heavy elements
Old and poor stars

Need to Explain

- SHAPES, SIZES, MASSES OF GALAXIES
- DISTRIBUTION ON SKY
- CONTENT

- EVOLUTION OF ABOVE

WITHIN A COSMOLOGICAL MODEL FOR THE EVOLUTION OF UNIVERSE! USING KNOWN LAWS OF PHYSICS

GRAVITY GOVERNS

VIERY WIEAIK \rightarrow Long time scales
BUT

- ONLY ATTIRACTIVE (NO P(OSIIIVE AND) NE(GATIVIE)
- LONG RANGE
\rightarrow WINS ON COSMIC SCALES
- Makes and holds together stars and galaxies and determines the cosmological evolution

Dynamical (virial) Equilibrium

$$
\frac{G M^{2}}{R} \sim M\left\langle V^{2}\right\rangle \sim N k_{B} T
$$

Note; Negative specific heat: E $\downarrow \rightarrow \mathrm{R} \downarrow \rightarrow \mathrm{V} \uparrow$ $\rightarrow \mathrm{T} \uparrow$ (if thermal)

Exercise: Find dynamical cal (crossing) time R/v (density)
The Peculiar force of gravity \rightarrow No standard thermal equilibrium
\rightarrow Higher entropy states \rightarrow more inhomogeneous

Galaxies are not Relativistic

- By shrinking -- or increasing mass - pot. energy can become arbitrarily negative \rightarrow equ implies $v_{\text {max }} \rightarrow \infty$
- In GR \rightarrow BH forms before ∞ !
- In practice , in galaxies,

$$
\frac{G M}{R c^{2}} \sim \frac{P}{\rho c^{2}} \sim 10^{-6}
$$

- Because: System fragments into stars before cooling catastrophe complete \rightarrow collisionless (no cool)
++ Dominant non-dissipative component?

GALACTIC CHARACTERISTICS

- Average Density $\sim 10^{-24} \mathrm{~kg} / \mathrm{m}^{3}$ (larger near centre)
- Compare with 5000 for Earth and $1 \mathrm{~kg} / \mathrm{m}^{3}$ for air
- Time scales ~ 100 million years; speeds $\sim 10-100 \mathrm{~km} / \mathrm{s}$
- Mass scale $\sim 10^{7}$ to 10^{13} solar masses (thermally governed)
- Most mass (particularly in outer regions) dark
- Nearest large galaxy > Million light years ~ Mpc

Larger scales (and back in time)

- CLUSTERS OF GALAXIES

1-10 Million light years ~ Mpc

- LARGE SCALE STRUCTURE
> few 100 Mil LY ~ 100 Mpc

~14 Gpc and ~ 14 Gyr

Why's the Night Sky Dark?

Olber's Paradox (from Kepler to Edgar Allan Poe!)

- Take any solid angle in sky
- Area subtended at distance r is $\sim r^{2}$
- And flux decrease goes as $\sim \frac{1}{r^{2}} \rightarrow$ product const!
- So flux received from stacked system of stars should be huge - at least as in surface of star!

Poe \rightarrow Finite age. Good but what about radiation from hot big bang?

Standard Picture of Cosmic Development

Newtonian Derivation of Cosmological

Evolution Equations

- Consider universe with uniform energy density
- If scale large \rightarrow need GR -- Newtonian gravity assumes instantaneous interaction (and $\mathrm{v} \ll \mathrm{c}$)
- Take instead small patch
\rightarrow fast communication ++ small speeds if homogeneously expanding/contacting.
- Because of homogeneity \rightarrow all patches same

Newton-Birkhoff theorem

- Take said patch to be spherical
(isotropy \rightarrow)

- Equation of motion

With $M=M(<r)$ - enclosed!

$$
\frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}=-\frac{G M}{r^{2}}
$$

'Energy Integral' and interpretation

- Integrate, keeping enclosed mass constant

$$
\frac{1}{2}\left(\frac{d r}{d t}\right)^{2}-\frac{G M(<r)}{r}=\mathrm{E}
$$

equilibrium

- 'Energy' $\mathrm{E} \rightarrow$ universe forever expands ($\mathrm{E}>0$) or recontracts $(\mathrm{E}<0)$
- No solutions

\rightarrow Like a ball thrown up!

Exercise: use above equation, with $E=0$, to derive 'typical timescale' of evolution (density) What do vou notice?

From Wayward Ball to Cosmological Fluid:

Friedmann Equations

1- Expanding radius through scale factor: $\boldsymbol{r}=\boldsymbol{R} \boldsymbol{a}(\boldsymbol{t})$
2- Active gravitational mass density: $\rho^{\prime}=\rho+\frac{3 p}{c^{2}}$

- Both rest energy and momentum contribute
- Recall that hydro stress $\sim \rho\left\langle v_{i} v_{j}\right\rangle$ with $(i, j=1,3)$

By Symmetry \rightarrow

No cross terms (anisotropic momenta) + no streaming (mass) motions -- $\left\langle v_{i}\right\rangle=\mathbf{0}$.
\rightarrow left with isotropic pressure terms (trace of space part) + density

- Weak field/small patch (quasi-static)

$$
\rightarrow \nabla^{2} \phi=4 \pi G \rho \rightarrow 4 \pi G\left(\rho+3 p / c^{2}\right)
$$

$\rightarrow M=\rho^{\prime} r^{3} \rightarrow$

$$
\frac{\ddot{a}}{a}=-\frac{4 \pi G \rho^{\prime}}{3}=-\frac{4 \pi G}{3}\left(\rho+\frac{3 p}{c^{2}}\right)
$$

Notes regarding pressure

- Its effect is unlike hydro pressure force.
- The latter comes from gradient, while in Friedmann universes $\boldsymbol{\nabla p}=\mathbf{0}$.
- It comes from its mass equivalence
- Hence attractive if +ve and repulsive when -ve
- As it enters through a term $\frac{P}{c^{2}} \sim \frac{\rho v^{2}}{c^{2}}+\rho$
\rightarrow important only for particles if relativistic

Fundamental Friedmann Equation

Include pressure in energy conservation equation \rightarrow

- Use $1^{\text {st }}$ law of thermo for adiabatic expansion

$$
\mathrm{d} U+p \mathrm{~d} V=0 \quad U=\rho c^{2} V
$$

$$
c^{2} \mathrm{~d}(\rho V)+p \mathrm{~d} V=0
$$

$$
V \propto a^{3}(t)
$$

$$
\frac{\ddot{a}}{a}=\frac{4 \pi G}{3}\left(2 \rho+a \frac{\mathrm{~d} \rho}{\mathrm{~d} a}\right) \Longrightarrow \quad \dot{a}^{2}-\frac{8 \pi G \rho}{3} a^{2}=2 E
$$

Note: Because of homogeneity, local energy conservation holds. Not always true for gravity Note: E here will have dimension of energy if scale factor is dimensional, otherwise $[E]=\left[t^{-2}\right]$

In General Relativity (max smmesicic pea)

FRW Metric $d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[\frac{d^{2} r}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$
Metric tensor $g_{\alpha \beta}=\operatorname{diag}\left(-1, \frac{a^{2}}{1-k r^{2}}, a^{2} r^{2}, a^{2} r^{2} \sin \theta^{2}\right)$
Field equations $\quad G_{\alpha \beta}=\frac{8 \pi G}{c^{4}} T_{\alpha \beta}$
Ricci tensor $R_{00}=3 \frac{\ddot{a}}{a} \quad$ Stress tensor $T_{00}=\rho c^{2}$

$$
\tilde{R}_{\mathrm{ij}}=-2 k \tilde{g}_{i j}
$$

$$
\dot{a}^{2}-\frac{8 \pi G \rho}{3} a^{2}=2 E \Longrightarrow\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho-\frac{k c^{2}}{a^{2}}
$$

Space time decomposition

- Universe appears isotropic
- ‘Copernican principle’: isotropic everywhere
\rightarrow Homogeneous
\rightarrow Observers synchronize clocks
\rightarrow agree on proper time of fundamental observers (cf. also Peebles Sec. I.4)
Defined, e.g., in terms of the homogeneous density

$$
\rightarrow d s^{2}=-c^{2} d t^{2}+a(t) d l^{2}
$$

At proper time t, the proper distance is $a(t) l$

The Static (closed) Space Metric

- Choose four dim. Spherical coordinates:

$$
\begin{aligned}
X & =R \sin \chi \sin \theta \cos \phi \\
Y & =R \sin \chi \sin \theta \sin \phi \\
Z & =R \sin \chi \cos \theta \\
W & =R \cos \chi
\end{aligned}
$$

$R=$ const defines surface of 3 -sphere
$R \sin \chi$ defines radius of 2-subsphere

- Line element on surface of sphere
\rightarrow

$$
X^{2}+Y^{2}+Z^{2}+W^{2}=R^{2}
$$

\rightarrow
$d l^{2}=d X^{2}+d Y^{2}+d Z^{2}+d W^{2}=R^{2}\left[d \chi^{2}+\sin ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$

Thus one can write,

 or$$
d l^{2}=R^{2}\left[d \chi^{2}+\sin ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

- If $\boldsymbol{r}=\mathrm{R} \sin \boldsymbol{\chi} \rightarrow \quad d l^{2}=\left[\frac{d^{2} r}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$

$$
|k|=1 / R^{2}
$$

Or, more compactly

$$
d l^{2}=R^{2} d \chi^{2}+r^{2} d \Omega
$$

Note:

1- $R \chi$ is a geodesic distance
2- $\boldsymbol{r} \boldsymbol{\vartheta}$ is an arclength on sub-sphere (circle on fig.)
3- $r^{2} d \Omega$ is an area on sub-sphere (circle $* d$ phi)

Fig. 3.1. The $\varphi=$ constant section of a Robertson-Walker metric with $K=1$, showing the meanings of various coordinates.

After Mo, van den Bosch \& White

Adding Expansion and Time

$$
\begin{gathered}
d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[\frac{d^{2} r}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \\
\boldsymbol{d} \boldsymbol{s}^{2}=-\boldsymbol{c}^{2} \boldsymbol{d} \boldsymbol{t}^{2}+\boldsymbol{a}^{\mathbf{2}}(\boldsymbol{t})\left[\boldsymbol{R}^{2} \boldsymbol{d} \chi^{2}+\boldsymbol{r}^{2} \boldsymbol{d} \boldsymbol{\Omega}\right] \underset{\substack{R a \text { is radius of curvature } \\
\rightarrow \text { Ricci scalar } \sim(R a)^{-2}}}{\text { Richen }} .
\end{gathered}
$$

Conventions: i) $k=-\frac{1}{R^{2}}, 0,+\frac{1}{R^{2}} \rightarrow r$ has length unit $\rightarrow a$ is dimensionless (with $\mathrm{a}_{0}=1$)
ii) $k=-1,0,+1 \rightarrow r$ is dimensionless $\rightarrow R=1 \rightarrow$ a has length unit

Positive Curvature \rightarrow

Negative curvature \rightarrow

Flat (zero curvature)

$$
\begin{gathered}
r=R \sin \chi \\
r=R \sinh \chi \\
r=R \chi
\end{gathered}
$$

Geometry and Density

If $E=k=0$ flat space
$\rho_{\mathrm{c}}(t) \equiv \frac{3 \dot{a}^{2}}{8 \pi G a^{2}}=\frac{3 H^{2}(t)}{8 \pi G}$

In general

$$
\begin{gathered}
\Omega(t) \equiv \frac{\rho(t)}{\rho_{\mathrm{c}}(t)}=\frac{8 \pi G \rho(t)}{3 H^{2}(t)} \\
\Omega^{-1}-1=\frac{3 E}{4 \pi G \rho a^{2}}=-\frac{3 k c^{2}}{8 \pi G \rho a^{2}}
\end{gathered}
$$

$H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho-\frac{k c^{2}}{a^{2}}$

Note:

What starts flat stays flat Same for open (-ve k) and closed (+ ve k)

To begin Fixing our Model: Expansion \rightarrow Redshift

$$
\begin{aligned}
& \lambda_{0}=\frac{a\left(t_{0}\right)}{a\left(t_{1}\right)} \lambda_{1} \quad t=\boldsymbol{t}_{\mathbf{1}} \rightarrow \rightarrow \rightarrow \boldsymbol{t}_{\mathbf{0}} \\
& z \equiv \frac{\lambda_{0}-\lambda_{1}}{\lambda_{1}} \quad 1+z=\frac{a\left(t_{0}\right)}{a\left(t_{1}\right)} \\
& z=H_{0}\left(t_{0}-t_{1}\right)+\cdots \quad z \simeq H_{0} d / c \quad,
\end{aligned}
$$

Hubble Constant usually expressed in km/s/Mpc

Hubble Time $\quad \boldsymbol{t}_{\boldsymbol{H}}=\boldsymbol{H}_{\mathbf{0}}^{\mathbf{- 1}}$

Newtonian universe with matter only

Exercise: Check that for Hubble const of $71 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, the Hubble time is a bit less than 14 Gyr

$$
\text { Hubble sphere radius } \rightarrow D_{H}=c H_{\mathbf{0}}^{\mathbf{- 1}}
$$

$\mathrm{d} \ll D_{H} \rightarrow$ (communication time faster than expansion time)

Conformal Time and Comoving Distance

- In terms of conformal time

$$
\tau(t)=\int_{0}^{t} \frac{c \mathrm{~d} t^{\prime}}{a\left(t^{\prime}\right)}
$$

- Metric becomes

$$
d s^{2}=a^{2}(\tau)\left[-d \tau^{2}+R^{2} d \chi^{2}+r^{2} d \Omega\right]
$$

- Comoving distance
between 'us' (at $t=t_{0}$) and light ($d s=0$) emitted at time t :
\rightarrow

$$
\boldsymbol{D}_{\boldsymbol{C}}=\boldsymbol{R} \chi(r)=\tau\left(t_{0}\right)-\tau(t)
$$

$$
D_{C}=c \int_{t}^{t_{0}} \frac{d t^{\prime}}{a\left(t^{\prime}\right)}
$$

Is a geodesic distance; not measurable

Fixing our Model:

Expansion \rightarrow Redshift

$$
\tau\left(\mathbf{t}_{\mathbf{0}}\right)-\tau\left(\boldsymbol{t}_{1}\right)=D_{C} \rightarrow \text { (invariant) }
$$

$$
\rightarrow \delta\left[\tau\left(\mathbf{t}_{0}\right)\right]-\delta\left[\tau\left(\boldsymbol{t}_{1}\right)\right]=0
$$

$$
t=t_{1} \rightarrow \rightarrow \rightarrow \quad t_{0}
$$

$$
\frac{\delta t_{1}}{a\left(t_{1}\right)}=\frac{\delta t_{0}}{a\left(t_{0}\right)}
$$

$$
\tau(t)=\int_{0}^{t} \frac{c \mathrm{~d} t^{\prime}}{a\left(t^{\prime}\right)}
$$

Frequencies proportional to time intervals \rightarrow

$$
\lambda_{0}=\frac{a\left(t_{0}\right)}{a\left(t_{1}\right)} \lambda_{1}
$$

Light from galaxies redshifted

Measuring Redshifts

Nobel $2011 \rightarrow$ acceleration!

Distances: Angular and Luminosity

- In flat space: Object of physical size D has angular extension $\delta \vartheta$ if it is at distance D_{A} :

$$
D=D_{A} \delta \vartheta
$$

- In flat space luminosity of object follows inverse square law. The luminosity distance is defined in terms of the intrinsic luminosity L (energy emitted per second) as,

$$
F=\frac{L}{4 \pi D_{L}^{2}}
$$

- D_{L} here is just the regular Euclidean distance
- F the observed flux (energy reconceived per second)
- Assumed transparent medium

Calibrating distances: Parallaxes and Cepheids

Earth (autumn)

Magnitudes: from Ptolemy of Alexandria to the Distance Modulus

- Classified stars from (apparent) brightest $1^{\text {st }}$ to least bright $6^{\text {th }}$
\rightarrow Magnitude gets smaller for brighter objects
- Defines a logscale (eye response to light logarithmic)
- For historical reasons (see Weinberg and refs there.. Or Wiki!)
- $M($ Object $)-M($ Sun $)=-2.5 \log _{10} \frac{L(\text { object })}{L(\text { Sun })}$

Apparent bolometric magnitudes m and absolute M (above; def. at 10 pc) are related by

$$
\boldsymbol{D}_{\boldsymbol{L}}=10^{1+(m-M) / 5} \mathrm{pc}
$$

Fixing Intrinsic Luminosity at > Gpc: Supernovae 1A

Galaxy Rotation (Tully-Fisher Relation)

Light from galaxies redshifted

Measuring Redshifts

Nobel $2011 \rightarrow$ acceleration!

Distances: Angular and Luminosity

- In flat space: Object of physical size D has angular extension $\delta \vartheta$ if it is at distance D_{A} :

$$
D=D_{A} \delta \vartheta
$$

- In flat space luminosity of object follows inverse square law. The luminosity distance is defined in terms of the intrinsic luminosity L (energy emitted per second) as,

$$
F=\frac{L}{4 \pi D_{L}^{2}}
$$

- D_{L} here is just the regular Euclidean distance
- F the observed flux (energy reconceived per second)
- Assumed transparent medium

To begin Fixing our Model: Expansion \rightarrow Redshift

$$
\begin{aligned}
& \lambda_{0}=\frac{a\left(t_{0}\right)}{a\left(t_{1}\right)} \lambda_{1} \quad t=\boldsymbol{t}_{\mathbf{1}} \rightarrow \rightarrow \rightarrow \boldsymbol{t}_{\mathbf{0}} \\
& z \equiv \frac{\lambda_{0}-\lambda_{1}}{\lambda_{1}} \quad 1+z=\frac{a\left(t_{0}\right)}{a\left(t_{1}\right)} \\
& z=H_{0}\left(t_{0}-t_{1}\right)+\cdots \quad z \simeq H_{0} d / c \quad,
\end{aligned}
$$

Hubble Constant usually expressed in km/s/Mpc

A higher z Hubble diagram

- Contents \rightarrow Dynamical History \rightarrow Which model?

Actually... what distances we measure?

Angular dist. in cosmological context

$$
d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[\frac{d^{2} r}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

Objects of proper length D
Emitting at a(t)
at angular scale $\boldsymbol{d} \boldsymbol{\theta}$

Such that

$$
\begin{aligned}
\mathrm{d} \boldsymbol{s}= & \boldsymbol{D}=\boldsymbol{a}(\boldsymbol{t}) \boldsymbol{r} \boldsymbol{d} \boldsymbol{\theta}=\boldsymbol{D}_{\boldsymbol{A}} \boldsymbol{d} \boldsymbol{\theta} \\
& \rightarrow D_{A}=r /(1+z)
\end{aligned}
$$

Cosmological Luminosity Distance

- Recall

$$
d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[R^{2} d \chi^{2}+r^{2} d \Omega\right]
$$

- Distance multiplying solid angle, $a(t) r^{2} d \Omega, \rightarrow$ area element
- At time t_{0} light reaches us ($a_{0}=1$) proper area of sphere drawn around object $4 \pi \boldsymbol{r}^{2}$ (same as area centered here and touching object)
- Again

$$
F=\frac{L}{4 \pi D_{L}^{2}}
$$

- But two f
- i) Photons are redshifted (less energetic)
- li) Rate at which they arrive is smaller
- Both by factors $1 /(1+z)$

\rightarrow

$$
D_{L}=r(1+z)=D_{A}(1+z)^{2}
$$

To begin Looking for r (from last time)

$$
\begin{aligned}
& d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[\frac{d^{2} r}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \\
& d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[R^{2} d \chi^{2}+r^{2} d \Omega\right] \quad R a \text { is radius of curvature } \\
& \rightarrow \text { Ricci scalar ~ }(R a)^{-2}
\end{aligned}
$$

Conventions: i) $k=-\frac{1}{R^{2}}, 0,+\frac{1}{R^{2}} \rightarrow r$ has length unit $\rightarrow a$ is dimensionless (with $\mathrm{a}_{0}=1$)
ii) $k=-1,0,+1 \rightarrow r$ is dimensionless $\rightarrow R=1 \rightarrow a$ has length unit

Positive Curvature \rightarrow

Negative curvature \rightarrow

Flat (zero curvature)

$$
\begin{gathered}
r=R \sin \chi \\
r=R \sinh \chi \\
r=R \chi
\end{gathered}
$$

Geometry and Density

If $E=k=0$ flat space
$\rho_{\mathrm{c}}(t) \equiv \frac{3 \dot{a}^{2}}{8 \pi G a^{2}}=\frac{3 H^{2}(t)}{8 \pi G}$

In general

$$
\begin{gathered}
\Omega(t) \equiv \frac{\rho(t)}{\rho_{\mathrm{c}}(t)}=\frac{8 \pi G \rho(t)}{3 H^{2}(t)} \\
\Omega-1=\frac{k c^{2}}{a^{2} H^{2}}
\end{gathered}
$$

$H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho-\frac{k c^{2}}{a^{2}}$

MAP990006

Note:

What starts flat stays flat Same for open (-ve k) and closed (+ ve k)

Fixing comoving scale

- $\chi=\frac{\boldsymbol{D}_{C}}{R} \quad$ and $\quad D_{C}=c \int_{t}^{t_{0}} \frac{d t^{\prime}}{a\left(t^{\prime}\right)}$
\rightarrow Known with $a(t)$ and $R!$
- For R : let scale factor dimensionless. $a_{0}=1, k= \pm \mathbf{1} / R^{2}$
- Using

$$
\rightarrow \quad k=\frac{H_{0}^{2}}{c^{2}}\left(\Omega_{0}-1\right) \quad \rightarrow \text { need } a(t) \text { then! }
$$

Note: r is sometimes referred to as 'proper motion distance' or 'transverse commoving distance', D_{M}

Evolution of Friedmann Universes

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho-\frac{k c^{2}}{a^{2}}
$$

- To solve equation \rightarrow need $\rho=\rho(a)$.
- 'Heuristically', we have:

Matter $\rightarrow \quad \rho_{M} \sim a^{-3}$
Radiation $\rightarrow \rho_{R} \sim a^{-4}$
Cosmological constant $\rightarrow \rho_{\Lambda}=$ const.

Using conservation law

- Assume

$$
p=w \rho c^{2}
$$

Recall

$$
\dot{a}^{2}-\frac{8 \pi G \rho}{3} a^{2}=2 E
$$

- Then

$c^{2} \mathrm{~d}(\rho V)+p \mathrm{~d} V=0 \Longrightarrow \rho \propto V^{-1-w} \propto a^{-3(1+w)}$

$$
\rho \propto \begin{cases}a^{-3} & \text { matter } \\ a^{-4} & \text { radiation } \\ a^{0} & \text { vacuum }\end{cases}
$$

Our understanding \rightarrow universe went through the following phases

1- Vacuum domination and vast exponential expansion ('inflation')
2- Radiation domination
3- Matter radiation
4- 'Recent' vacuum donation (again)

And that it is quite flat...

Evolution in spatially flat Universe
Note: early universe \rightarrow nearly flat anyway!

$$
p=w \rho c^{2} \quad w \quad \rho(a) \quad a(t)
$$

$\Omega^{-1}-1=\frac{3 E}{4 \pi G \rho a^{2}}=-\frac{3 k c^{2}}{8 \pi G \rho a^{2}}$

$p=w \rho c^{2}$	w	$\rho(a)$	$a(t)$
RD	$\frac{1}{3}$	a^{-4}	$t^{1 / 2}$
MD	0	a^{-3}	$t^{2 / 3}$
$\Lambda \mathrm{D}$	-1	a^{0}	$e^{H t}$

Horizons

- Hubble Sphere $\boldsymbol{D}_{\boldsymbol{H}}=\boldsymbol{c} \boldsymbol{H}_{\mathbf{0}}^{\mathbf{- 1}}$
- Light emmited at time past and probed at future time t_{f}, covers commoving distance:

$$
D_{C}=c \int_{t_{e}}^{t_{f}} \frac{d t^{\prime}}{a\left(t^{\prime}\right)}
$$

- Converges at lower limit \rightarrow some past events can't be observed at t_{f} particle horizon $\rightarrow \boldsymbol{t}_{\boldsymbol{e}} \rightarrow \mathbf{0}$, and $\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{0}$
\rightarrow Farthest we can see... $\sim 14 \mathrm{Gpc}$ comoving.
- Converges at upper limit current events cannot be seen in future \rightarrow 'event horizon' with $t_{e}=t_{0}$ and $t_{f} \rightarrow \infty$

Distances: with (almost) everything in it

$$
\begin{aligned}
& \boldsymbol{H}^{\mathbf{2}}=\begin{array}{|c}
\boxed{\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho-\frac{k c^{2}}{a^{2}}} \text { and } \boldsymbol{\rho}_{\boldsymbol{c} \mathbf{0}}=\frac{\mathbf{3} \boldsymbol{H}_{\mathbf{0}}^{\mathbf{2}}}{\mathbf{8} \boldsymbol{\pi} \boldsymbol{G}} ; \boldsymbol{\Omega}_{\boldsymbol{M} \mathbf{0}}=\frac{\boldsymbol{\rho}_{\boldsymbol{M} \mathbf{0}}}{\boldsymbol{\rho}_{\boldsymbol{c} \mathbf{0}}} \text { etc } \ldots \\
H^{2}(a)=H_{0}^{2}\left[\frac{\Omega_{M 0}}{a^{3}}+\frac{\Omega_{R 0}}{a^{4}}+\frac{\Omega_{K 0}}{a^{2}}+\Omega_{\Lambda}\right] \text { (exercise) } \\
D_{C}=\int_{t}^{t_{0}} \frac{c d t^{\prime}}{a\left(t^{\prime}\right)}=c \int_{a}^{1} \frac{d a}{a^{2} H(a)}=D_{H} \int_{a}^{1} \frac{d a}{a^{2} \sqrt{\Omega_{M} / a^{3}+\Omega_{R} / a^{4}+\Omega_{k} / a^{2}+\Omega_{\Lambda}}} \\
\boldsymbol{\Omega}_{\boldsymbol{k}}=-\frac{\boldsymbol{k} \boldsymbol{c}^{2}}{\boldsymbol{a}^{2} \boldsymbol{H}^{2}}= \pm \frac{\mathbf{c}^{\mathbf{2}}}{\mathbf{R}^{2} \mathbf{a}^{\mathbf{2} \mathbf{H}^{2}}}= \pm \frac{\boldsymbol{D}_{H}^{2}}{\boldsymbol{R}^{2} \boldsymbol{a}^{2}}
\end{array} \quad t_{0}=\frac{1}{H_{0} \int_{0}^{1} \frac{d a}{a \sqrt{\Omega_{M} / a^{3}+\Omega_{R} / a^{4}+\Omega_{k} / a^{2}+\Omega_{\Lambda}}}}
\end{aligned}
$$

\rightarrow Now compare with observations; e.g. supernovae

Expansion and its Acceleration: Dark Energy and Dark Matter

Current acceleration \rightarrow

Dark energy

Past deceleration rate \rightarrow Dark matter

Lambda-CDM

- Measurements \rightarrow vanishing spatial curvature, ~ 70 \% dark energy, 25 \% dark matter

Parameters in agreement with CMB and LSS (coming lectures). But measurements of Hubble parameter in tension with these.

Fluctuations in the $\mathrm{CMB} \rightarrow$ seeding structure

Local Form of Coordinate Distance

- Expand scale factor around local value:

$$
a(t)=a_{0}\left[1+H_{0}\left(t-t_{0}\right)-\frac{1}{2} q_{0} H_{0}^{2}\left(t-t_{0}\right)^{2}+\ldots\right]
$$

- ‘Deceleration' parameter

$$
q_{0} \equiv-\frac{\ddot{a}_{0} a_{0}}{\dot{a}_{0}^{2}}
$$

- Expand r to get (note the flat space approximation emerges; technically should divide both sides of eq. by $1 / R$ then expand, then multiply again. Assume $a_{0}=1$)

$$
\left\lvert\, \quad c\left(t-t_{0}\right)+c H_{0} \frac{\left(t_{0}-t\right)^{2}}{2}+\ldots=r+\ldots\right.
$$

- Then (exercise) \rightarrow

$$
r \approx \frac{c}{H_{0}}\left[z-\frac{1}{2} z^{2}\left(1+q_{0}\right)+\ldots\right]
$$

