Physical Cosmology and Galaxies Summer Internship Programme July 2021

Amr El-Zant (CTP, BUE, Cairo)

Useful refs:

- Liddle: Introduction to Cosmology (Focus on Newtonian background cosmic evolution)

-Mo, van den Bosch & White: Galaxy Formation and Evolution (a modern cosmological context) - Ferreira: Lectures on General Relativity and Cosmology (simple intro with essentials)

http://wwwastro.physics.ox.ac.uk/~pgf/B3..pdf

- Peacock: Cosmological Physics (Newtonian + GR).
- Peebles: principles of Physical Cosmology (a classic with careful treatment; bit outdated)
- Weinberg: Cosmology (advanced, first chapter, to p 100, quite useful).
- Ryden: Introduction to cosmology (covers a lot at a reasonably simple level)

Casmic Distance Scale

• Earth-Moon ~ 1 light second

• Earth-Sun ~ 8 light minutes

• Nearest stars

>~ few light yrs ~ parsec

What is a parsec?

- Useful intro into diameter distance
- Distance at which earth orbit round sun (1 AU) subtends an angle *9* of **1 arcsecond**

parsec = pc kpc = 1000 pc Mpc = 1000 000 pc Gpc = 1000 000 000 pc

Exercise: Find that 1 pc = 3.26 light year

The Milky Way Galaxy

Distance from sun to centre ~ 25 000 light years (8 kpc) Farthest individual stars seen by naked eye ~ 1000 light years

The (Local) Galaxy Population

Stars + Gas + Dust (+ Dark Matter)

 May be disk or spheroid,; contain lots of gas or little; have active star formation or not. Some have quasars.

Rotational support

Random , 'pressure' support

Younger stars with heavy elements

Old and poor stars

Need to Explain

- SHAPES, SIZES, MASSES OF GALAXIES
- DISTRIBUTION ON SKY
- CONTENT
- EVOLUTION OF ABOVE

 Early evolution of galaxy mass function (Grazian et. al. 2015)

WITHIN A COSMOLOGICAL MODEL FOR THE EVOLUTION OF UNIVERSE! USING KNOWN LAWS OF PHYSICS

GRAVITY GOVERNS

VERY WEAK → Long time scales **BUT**

- ONLY ATTRACTIVE (NO POSITIVE AND NEGATIVE)
- LONG RANGE

→ WINS ON COSMIC SCALES

 Makes and holds together stars and galaxies and determines the cosmological evolution

Dynamical (virial) Equilibrium

$$\frac{GM^2}{R} \sim M\left\langle V^2 \right\rangle \sim Nk_B T$$

Note; Negative specific heat: $E \downarrow \rightarrow R \downarrow \rightarrow V \uparrow \rightarrow T \uparrow (if thermal)$

Exercise: Find dynamical cal (crossing) time R/v (density)

The Peculiar force of gravity→
No standard thermal equilibrium
→ Higher entropy states → more inhomogeneous

Galaxies are not Relativistic

- By shrinking -- or increasing mass pot. energy can become arbitrarily negative \rightarrow equ implies $v_{\max} \rightarrow \infty$
- In GR \rightarrow BH forms before ∞ !
- In practice , in galaxies,

$$\frac{GM}{Rc^2} \sim \frac{P}{\rho c^2} \sim 10^{-6}$$

- Because: System fragments into stars before
 cooling catastrophe complete → collisionless (no cool)
- ++ Dominant non-dissipative component?

GALACTIC CHARACTERISTICS

- Average Density ~ 10^{-24} kg/m³ (larger near centre)
- Compare with 5000 for Earth and 1 kg/m^3 for air
- **Time scales** ~100 million years; speeds ~10-100 km/s
- Mass scale ~ 10^7 to 10^{13} solar masses (thermally governed)
- Most mass (particularly in outer regions) dark
- **Nearest** large **galaxy** > Million light years ~ **Mpc**

Larger scales (and back in time)

CLUSTERS OF GALAXIES

1-10 Million light years ~ Mpc

LARGE SCALE STRUCTURE
 > few 100 Mil LY ~ 100 Mpc

 \sim 14 Gpc and \sim 14 Gyr

Why's the Night Sky Dark? Olber's Paradox (from Kepler to Edgar Allan Poe!)

- Take any solid angle in sky
- Area subtended at distance r is ~ r^2
- And flux decrease goes as $\sim \frac{1}{r^2} \rightarrow$ product const!
- So flux received from stacked system of stars should be huge – at least as in surface of star!

Area A

Poe → Finite age. Good but what about radiation from hot big bang?

Standard Picture of Cosmic Development

Newtonian Derivation of Cosmological Evolution Equations

Consider universe with uniform energy density

 If scale large → need GR -- Newtonian gravity assumes instantaneous interaction (and v<<c)

• Take instead small patch

→ fast communication ++ small speeds if homogeneously expanding/contacting.

Because of homogeneity → all patches same

Newton-Birkhoff theorem

• Take said patch to be spherical (isotropy \rightarrow)

Equation of motion

With M = M (< r) – enclosed!

Energy Integral' and interpretation

• Integrate, keeping enclosed mass constant

$$\frac{1}{2} \left(\frac{d r}{d t} \right)^2 - \frac{G M (\langle r)}{r} = \mathsf{E}$$

equilibrium

'Energy' E → universe forever expands (E>0) or recontracts (E<0)

Exercise: use above equation, with E =0, to derive 'typical timescale' of evolution (density) What do you notice?

From Wayward Ball to Cosmological Fluid: Friedmann Equations

- 1- Expanding radius through scale factor: r = R a(t)
- **2-** Active gravitational mass **density:** $\rho' = \rho + \frac{3p}{c^2}$
 - Both rest energy and momentum contribute
- Recall that hydro stress $\sim \rho \langle v_i v_j \rangle$ with (i, j = 1, 3)

By Symmetry →

 $\rightarrow M = \rho' r^3 \rightarrow$

No cross terms (anisotropic momenta) + no streaming (mass) motions -- $\langle v_i \rangle = 0$. \rightarrow left with isotropic pressure terms (trace of space part) + density

- Weak field/small patch (quasi-static)

$$\rightarrow \nabla^2 \phi = 4 \pi G \rho \rightarrow 4 \pi G (\rho + 3 p/c^2)$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G\rho'}{3} = -\frac{4\pi G}{3}\left(\rho + \frac{3p}{c^2}\right)$$

Notes regarding pressure

- Its effect is unlike hydro pressure force.
- The latter comes from gradient, while in Friedmann universes $\nabla p = 0$.
- It comes from its mass equivalence
- Hence attractive if +ve and repulsive when –ve
- As it enters through a term $\frac{P}{c^2} \sim \frac{\rho v^2}{c^2} + \rho$ \rightarrow important only for particles if relativistic

Fundamental Friedmann Equation

Include pressure in energy conservation equation \rightarrow

Use 1st law of thermo for adiabatic expansion

$$dU + p \, dV = 0 \qquad U = \rho c^2 V$$

$$c^2 d(\rho V) + p \, dV = 0 \qquad V \propto a^3(t)$$

$$\frac{\ddot{a}}{a} = \frac{4\pi G}{3} \left(2\rho + a \frac{d\rho}{da} \right) \implies \dot{a}^2 - \frac{8\pi G\rho}{3} a^2 = 2$$

Note: Because of homogeneity, local energy conservation holds. Not always true for gravity Note: *E* here will have dimension of energy if scale factor is dimensional, otherwise [E] = $[t^{-2}]$

3

In General Relativity (max symmetric space)

FRW Metric
$$ds^2 = -c^2 dt^2 + a^2(t) \left[\frac{d^2 r}{1 - kr^2} + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \right]$$

Metric tensor
$$g_{\alpha\beta} = diag(-1, \frac{a^2}{1-kr^2}, a^2r^2, a^2r^2\sin\theta^2)$$

Field equations
$$G_{\alpha\beta} = \frac{8\pi G}{c^4}T_{\alpha\beta}$$

Ricci tensor
$$R_{00} = 3\frac{\ddot{a}}{a}$$
 Stress tensor $T_{00} = \rho c^2$
 $\tilde{R}_{ij} = -2 k \tilde{g}_{ij}$
 $\tilde{R}_{ij} = -2 k \tilde{g}_{ij}$

$$\dot{a}^2 - \frac{8\pi G\rho}{3}a^2 = 2E \quad \Longrightarrow \quad$$

Space time decomposition

- Universe appears isotropic
- 'Copernican principle': isotropic everywhere
- → Homogeneous
- \rightarrow Observers synchronize clocks
- → agree on proper time of fundamental observers (cf. also Peebles Sec. I.4)
- Defined, e.g., in terms of the homogeneous density

$$\rightarrow d s^2 = -c^2 d t^2 + a(t) d l^2$$

At proper time *t*, the proper distance is a(t)l

The Static (closed) Space Metric

- Choose four dim. Spherical coordinates:
 - $X = R \sin \chi \sin \theta \cos \phi$
 - $Y = R \sin \chi \sin \theta \sin \phi$
 - $Z = R\sin\chi\cos\theta$
 - $W = R \cos \chi$

R = const defines surface of 3-sphere **R** sin χ defines radius of 2-subsphere

• Line element on surface of sphere

$$\rightarrow \qquad X^2 + Y^2 + Z^2 + W^2 = R^2$$

 $d l^{2} = dX^{2} + dY^{2} + dZ^{2} + dW^{2} = R^{2} \left[d\chi^{2} + \sin^{2} \chi (d\theta^{2} + \sin^{2} \theta d\phi^{2}) \right]$

Fig. 3.1. The φ = constant section of a Robertson–Walker metric with K = 1, showing the g meanings of various coordinates.

After Mo, van den Bosch & White

Adding Expansion and Time

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)\left[\frac{d^{2}r}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})\right]$$

 $d s^{2} = -c^{2} d t^{2} + a^{2}(t) [R^{2} d \chi^{2} + r^{2} d \Omega] \qquad \qquad R a \text{ is radius of curvature} \\ \rightarrow \text{Ricci scalar} \sim (R a)^{-2}$

Conventions: i) $k = -\frac{1}{R^2}$, $0, +\frac{1}{R^2} \rightarrow r$ has length unit \rightarrow a is dimensionless (with $a_0 = 1$)

ii) k = -1, 0, $+1 \rightarrow r$ is dimensionless $\rightarrow R = 1 \rightarrow a$ has length unit

Hubble Constant usually expressed in km/s/Mpc

Hubble Time $t_H = H_0^{-1}$

Exercise: Check that for Hubble const of 71 km/s/Mpc, the Hubble time is a bit less than 14 Gyr

Hubble sphere radius $\rightarrow D_H = c H_0^{-1}$

 $d \ll D_H \rightarrow$ (communication time faster than expansion time)

Conformal Time and Comoving Distance

In terms of <u>conformal time</u>

$$\tau(t) = \int_0^t \frac{c \, \mathrm{d}t'}{a(t')}$$

• Metric becomes

$$d s^{2} = a^{2}(\tau) \left[-d \tau^{2} + R^{2} d \chi^{2} + r^{2} d \Omega \right]$$

<u>Comoving distance</u>

between 'us' (at $t = t_0$) and *light (ds = 0)* emitted at time t:

$$\boldsymbol{D}_{\boldsymbol{C}} = \boldsymbol{R} \; \boldsymbol{\chi}(r) = \boldsymbol{\tau}(t_0) - \boldsymbol{\tau}(t)$$

$$D_C = c \int_t^{t_0} \frac{dt'}{a(t')}$$

Is a geodesic distance; not measurable

In "today's currency" -- measure

Fixing our Model: Expansion→ Redshift

$$\tau(\mathbf{t_0}) - \tau(t_1) = D_C \rightarrow (\text{invariant})$$

$$\rightarrow \delta \left[\tau \left(\mathbf{t}_{0} \right) \right] - \delta \left[\tau \left(t_{1} \right) \right] = \mathbf{0}$$

$$\frac{\delta t_1}{a(t_1)} = \frac{\delta t_0}{a(t_0)}$$

Frequencies proportional to time intervals \rightarrow

$$\tau(t) = \int_0^t \frac{c \, \mathrm{d}t'}{a(t')}$$

$$\lambda_0 = \frac{a(t_0)}{a(t_1)} \,\lambda_1$$

Measuring Redshifts

Light from galaxies redshifted

Nobel 2011 → acceleration!

Distances: Angular and Luminosity

• In flat space: Object of physical size D has angular extension $\delta \vartheta$ if it is at distance D_A :

$$D = D_A \,\delta\vartheta$$

 In flat space luminosity of object follows inverse square law. The luminosity distance is defined in terms of the intrinsic luminosity L (energy emitted per second) as,

$$F = \frac{L}{4\pi D_L^2}$$

- D_L here is just the regular Euclidean distance
- F the observed flux (energy reconceived per second)
- Assumed transparent medium

Calibrating distances: Parallaxes and Cepheids

Magnitudes: from Ptolemy of Alexandria to the Distance Modulus

• Classified stars from (apparent) brightest 1st to least bright 6th

Magnitude gets smaller for brighter objects

- Defines a logscale (eye response to light logarithmic)
- For historical reasons (see Weinberg and refs there.. Or Wiki!)

•
$$M$$
 (**Object**) - M (**Sun**) = -2.5 log₁₀ $\frac{L(\text{object})}{L(\text{Sun})}$

Apparent bolometric magnitudes m and absolute M (above; def. at 10 pc) are related by

Apparent brightnesses of some objects in the magnitude system

Fixing Intrinsic Luminosity at > Gpc: Supernovae 1A

Galaxy Rotation (Tully-Fisher Relation)

Ongoing progress at high z...

Measuring Redshifts

Light from galaxies redshifted

Nobel 2011 → acceleration!

Distances: Angular and Luminosity

• In flat space: Object of physical size *D* has angular extension $\delta \vartheta$ if it is at distance D_A :

$$D = D_A \,\delta\vartheta$$

 In flat space luminosity of object follows inverse square law. The luminosity distance is defined in terms of the intrinsic luminosity L (energy emitted per second) as,

$$F = \frac{L}{4\pi D_L^2}$$

- D_L here is just the regular Euclidean distance
- F the observed flux (energy reconceived per second)
- Assumed transparent medium

Hubble Constant usually expressed in km/s/Mpc

A higher z Hubble diagram

Contents → Dynamical History → Which model?

Actually... what distances we measure?

Angular dist. in cosmological context

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)\left[\frac{d^{2}r}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})\right]$$

Objects of proper length D
Emitting at a(t)
at angular scale
$$d\theta$$

Such that

$$\mathrm{d} s = D = a(t) r \, d\theta = D_A \, d\theta$$

 $\rightarrow D_A = r/(1+z)$

Known object size + angle on sky \rightarrow r +++ can also find r from cosmological model

Cosmological Luminosity Distance

• Recall $d s^2 = -c^2 d t^2 + a^2(t) [R^2 d \chi^2 + r^2 d \Omega]$

- Distance multiplying solid angle, $a(t) r^2 d \Omega$, \rightarrow area element
- At time t_0 light reaches us ($a_0 = 1$) proper area of sphere drawn around object $4 \pi r^2$ (same as area centered here and touching object)

• Again
$$F = \frac{L}{4\pi D_L^2}$$

• But two f.....

- i) Photons are redshifted (less energetic)
- Ii) Rate at which they arrive is smaller
- Both by factors 1/ (1+z)

$D_L = r(1+z) = D_A(1+z)^2$

(if convention with dimensional scale factor a is used there's an extra factor of $a(t_0) = a_0$)

To begin Looking for r (from last time)

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)\left[\frac{d^{2}r}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})\right]$$

 $d s^{2} = -c^{2} d t^{2} + a^{2}(t) [R^{2} d \chi^{2} + r^{2} d \Omega] \qquad \qquad R a \text{ is radius of curvature} \\ \rightarrow \text{Ricci scalar} \sim (R a)^{-2}$

Conventions: i) $k = -\frac{1}{R^2}$, $0, +\frac{1}{R^2} \rightarrow r$ has length unit \rightarrow a is dimensionless (with $a_0 = 1$)

ii) k = -1, 0, $+1 \rightarrow r$ is dimensionless $\rightarrow R = 1 \rightarrow a$ has length unit

Fixing comoving scale

•
$$\chi = \frac{D_C}{R}$$
 and $D_C = c \int_t^{t_0} \frac{dt'}{a(t')}$

- \rightarrow Known with *a* (*t*) and *R*!
- For R: let scale factor dimensionless. $a_0 = 1$, $k = \pm 1/R^2$

• Using
$$\Omega - 1 = \frac{kc^2}{a^2H^2}$$
 and Fixing at 'now':
 $\rightarrow \quad \mathbf{k} = \frac{H_0^2}{c^2} \left(\mathbf{\Omega}_0 - \mathbf{1}\right) \quad \rightarrow \text{need } a \text{ (t) then!}$

Note: r is sometimes referred to as 'proper motion distance' or 'transverse commoving distance', D_M

Evolution of Friedmann Universes

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{kc^2}{a^2}$$

- To solve equation \rightarrow need $\rho = \rho(a)$.
- 'Heuristically', we have:

Matter $\rightarrow \rho_M \sim a^{-3}$ Radiation $\rightarrow \rho_R \sim a^{-4}$ Cosmological constant $\rightarrow \rho_A = \text{const.}$

• Assume $p = w\rho c^{2}$ • Then $c^{2}d(\rho V) + p dV = 0 \longrightarrow \rho \propto V^{-1-w} \propto a^{-3(1+w)}$

Our understanding \rightarrow universe went through the following phases

- 1- Vacuum domination and vast exponential expansion ('inflation')
- 2- Radiation domination
- **3- Matter radiation**
- 4- 'Recent' vacuum donation (again)

And that it is quite flat...

Note: early universe → nearly flat anyway!

$$\Omega^{-1} - 1 = \frac{3E}{4\pi G\rho a^2} = -\frac{3kc^2}{8\pi G\rho a^2}$$

Evolution in spatially flat Universe			
$p = w\rho c^2$	w	$\rho(a)$	a(t)
RD	$\frac{1}{3}$	a^{-4}	$t^{1/2}$
MD	0	a^{-3}	$t^{2/3}$
ΛD	-1	a^0	e^{Ht}

<u>Horizons</u>

- Hubble Sphere $D_H = c H_0^{-1}$
- Light emmited at time past and probed at future time t_f, covers commoving distance:

$$D_C = C \int_{t_e}^{t_f} \frac{dt'}{a(t')}$$

- Converges at lower limit → some past events can't be observed at t_f particle horizon → t_e → 0, and t_f = t₀
 → Farthest we can see... ~ 14 Gpc comoving.
- Converges at upper limit current events cannot be seen in future \rightarrow 'event horizon' with $t_e = t_0$ and $t_f \rightarrow \infty$

Distances: with (almost) everything in it

$$H^{2} = \boxed{\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{kc^{2}}{a^{2}}} \text{ and } \rho_{c0} = \frac{3H_{0}^{2}}{8\pi G}; \ \Omega_{M0} = \frac{\rho_{M0}}{\rho_{c0}} \text{ etc ...}}$$
$$H^{2}(a) = H_{0}^{2} \left[\frac{\Omega_{M0}}{a^{3}} + \frac{\Omega_{R0}}{a^{4}} + \frac{\Omega_{K0}}{a^{2}} + \Omega_{\Lambda}\right] \text{ (exercise)}}$$
$$D_{C} = \int_{t}^{t_{0}} \frac{cdt'}{a(t')} = c \int_{a}^{1} \frac{da}{a^{2}H(a)} = D_{H} \int_{a}^{1} \frac{da}{a^{2}\sqrt{\Omega_{M}/a^{3} + \Omega_{R}/a^{4} + \Omega_{k}/a^{2} + \Omega_{\Lambda}}}$$
$$t_{0} = \frac{1}{H_{0}} \int_{0}^{1} \frac{da}{a\sqrt{\Omega_{M}/a^{3} + \Omega_{R}/a^{4} + \Omega_{k}/a^{2} + \Omega_{\Lambda}}}$$

→ Now compare with observations; e.g. supernovae

Expansion and its Acceleration: Dark Energy and Dark Matter

 Current acceleration →

 Dark energy

 Past deceleration rate →

 Dark matter

Lambda-CDM

• Measurements → vanishing spatial curvature, ~ 70 % dark energy, 25 % dark matter

- Parameters in agreement with CMB and LSS (coming lectures).
- But measurements of Hubble parameter in tension with these.

Fluctuations in the CMB \rightarrow seeding structure

Coming talks

Local Form of Coordinate Distance

• Expand scale factor around local value:

$$a(t) = a_0 \left[1 + H_0(t - t_0) - \frac{1}{2} q_0 H_0^2(t - t_0)^2 + \dots \right]$$

'Deceleration' parameter

$$q_0 \equiv -\frac{a_0 a_0}{\dot{a}_0^2}$$

• Expand r to get (note the flat space approximation emerges; technically should divide both sides of eq. by 1/R then expand, then multiply again. Assume $a_0 = 1$)

$$c(t - t_0) + cH_0 \frac{(t_0 - t)^2}{2} + \dots = r + \dots$$

• Then (exercise) \rightarrow $r \approx \frac{c}{H_0} \left[z - \frac{1}{2} z^2 (1+q_0) + \ldots \right]$