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From previous lecture

We derived the Gauss-Codazzi equation

(4)Rρ
σµνγ

µ
αγ

ν
ργ

γ
ργ

σ
δ = (3)Rγ

δαβ + Kγ
αKδβ − Kγ

βKαδ. (1)

and the Codazzi-Mainardi equation

DνKµρ − DµKνρ = γα
µγ

β
ν γ

γ
ρn

δ(4)Rαβγδ, (2)
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The constraint equations

▶ The 3 + 1 decomposition of Einstein’s equations allows to identify the intrinsic metric
γµν and the extrinsic curvature Kµν of an initial hypersurface as the initial data to be
prescribed for the evolution equations of GR.

▶ We will see that not all the components of γ and K freely propagate, as there are
constraints hidden in the Gauss-Codazzi and Codazzi-Mainardi equations. We will assess
them by considering the Einstein’s equations in vaccuum (4)Rµν = 0.
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The Hamiltonian constraint

▶ We compute the following contraction of the Gauss-Codazzi equation

γαµγβ
ρ γ

ν
σ
(4)Rαβµν = (3)Rρσ + KKρσ − Kα

σ Kαρ. (3)

▶ An additional contraction gives

γαµγβν (4)Rαβµν = (3)R + K 2 − KµνK
µν (4)

▶ It can be proved that the lhs vanishes, since

γαµγβν (4)Rαβµν = (gαµ + nαnµ)(gβν + nβnν)(4)Rαβµν (5)

= (4)R + 2nµnν (4)Rµν + nαnβnµnν (4)Rαβµν = 0. (6)

▶ In this way, we get the Hamiltonian constraint

(3)R + K 2 − KµνK
µν = 0. (7)
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The momentum constraint

▶ We contract once the Codazzi-Mainardi equation to get

DνKµν − DµK = γα
µγ

βγnδ(4)Rαβγδ. (8)

▶ However, we can expand the second γ on the rhs as

γα
µγ

βγnδ(4)Rαβγδ = −γα
µ (g

βγ + nβnγ)nδ(4)Rβαγδ (9)

= −γα
µn

δ(4)Rαδ − γα
µn

βnγnδ(4)Rαβγδ = 0, (10)

where in the last equality we used vacuum Einstein equations and symmetries of the
Riemann tensor.

▶ The final result is the momentum constraint

DνKµν − DµK = 0. (11)
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Evolution equations

▶ The “Hamiltonian” and “momentum” constraints appear in the Hamiltonian formulation of
GR.

▶ The Hamiltonian and momentum constraints involve only the 3D intrinsic metric γµν , the
extrinsic curvature Kµν , and their spatial derivatives.

▶ They are conditions that allow a 3D slice with data (hµν ,Kµν) to be embedded in a 4D
spacetime (M, gµν).

▶ The initial data cannot be freely prescribed due to the existence of the constraint
equations.
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Evolution equations

▶ Einstein’s equations imply at linear level a wave equation for the components of the metric
tensor, which are second order.

▶ We can obtain evolution equations of first order by deriving a geometric identity among
the Lie derivative of the extrinsic curvature in the direction to the normal of the foliation.

▶ This is given by the Ricci equation

LnKµν = nδnγγα
µγ

β
ν
(4)Rδγαβ − 1

α
DµDνα− Kρ

νKµρ, (12)

which relates the derivative of the K in the normal direction to a hypersurface, to a time
projection of the Riemann tensor.
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Evolution equations

▶ In contrast with the 1-form ωµ = ∇µt, we define a time vector tµ such that

tµ = αnµ + βµ, βµn
µ = 0. (13)

It propagates coordinates from one time slice to another, that is, it connects points with
the same spatial coordinates.
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Evolution equations

▶ With the previous definition, it can be obtained the evolution equation for the intrinsic
metric

Ltγµν = −2αKµν + Lβγµν . (14)

▶ Using the Ricci equation, the Gauss-Codazzi equation, Rµν = 0, and some effort, it can be
obtained the time evolution for the extrinsic curvature

LtKµν = −DµDνα+ α
[
(3)R − 2KµαK

α
ν + KKµν

]
+ LβKαβ (15)

▶ These are the ADM (Arnowitt-Deser-Misner) equations, which are fully equivalent to the
Einstein field equations in vacuum.

▶ They are first order equations in (hµν ,Kµν), but they are a weakly hyperbolic system of
partial differential equations, which creates trouble for numeric resolution.

▶ An improved extension with strong hyperbolicity is contemplated in the BSSNOK
formalism.
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Lagrangian of GR

▶ From our previous analysis we can derive the following decomposition

(4)R = (3)R + KijK
ij − K 2, (16)

where K = K i
i and (3)R is the Ricci scalar in 3D. (There are boundary terms that do not

affect the field equations, but are important for spacetimes with boundaries or nontrivial
boundary conditions).

▶ We observe that the Ricci scalar in 4D can be decomposed into a kinetic term quadratic
in K which contains time derivatives of γij , and a potential term (3)R containing only γij
and its spatial derivatives.

▶ In consequence, we can write the Einstein-Hilbert action in 3+1 form as

SE =
1
2κ

∫
d4x

√
γα(KijK

ij − K 2 + (3)R). (17)
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Primary constraints in GR

▶ The time derivatives of α and βi do not appear in the action. Therefore, we can safely
recognize the following primary constraints

π0 =
δL

δα̇
= 0, πi =

δL

δβ̇i
= 0. (18)

▶ These are all the primary constraints, since in all the remaining momenta

πij =
δL

δγ̇ij
=

1
2α

δL

δKij
=

√
γ

2κ
(K ij − Kγ ij), (19)

all the velocities can be solved in terms of the momenta as

γ̇ij =
2κ
√
γ
(2πij − πk

kγij) + 2D(iβj). (20)

▶ (Remember that)

Kij =
1
α

(
−1

2
γ̇ij + D(iβj)

)
. (21)
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Hamiltonian

▶ Therefore, we can write the gravitational Hamiltonian

H =

∫
d3x(γ̇ijπ

ij − L+ λ0π0 + λiπi ) (22)

▶ Replacing the 3+1 Lagrangian and the velocities in terms of the momenta, it is obtained

H =

∫
d3x

[
2κα
√
γ

(
πijπ

ij − 1
2
(πi

i )
2
)
+ 2πijDiNj −

α
√
γ

2κ
(3)R

]
+

∫
d3x(λ0π0+λiπi ) (23)

▶ After obtaining the Hamiltonian, we need to make sure our primary constraints are
preserved over time.
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Poisson brackets in GR

▶ The Poisson brackets in GR are defined as

{γij(x), γkl(y)} = 0,

{πij(x), πkl(y)} = 0,

{γij(x), πkl(y)} =
1
2
(δki δ

l
j + δkj δ

l
i )δ

(3)(x − y).

(24)

▶ Note that the PB work this way when indices are in “canonical” positions. Otherwise,
some variational properties are needed.

▶ When computing spatial derivatives of the fundamental variables, care must be taken with
derivatives of Dirac delta, or used “smeared” constraints.
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Time evolution of primary constraints

▶ The consistency of primary constraints imply the presence of secondary constraints. Firstly,

π̇0 = {π0,H} = − 2κ
√
γ

(
πijπij −

1
2
(πi

i )
2
)
+

√
γ

2κ
(3)R ≡ C0. (25)

To ensure consistency, we must impose that this expression is weakly zero. This is the
Hamiltonian constraint.

▶ An alternative form for it is

C0 ≡ −2κGijklπ
ijπkl +

1
2κ

√
γ(3)R = 0, (26)

where the so-called supermetric is defined as

Gijkl =
1

2
√
γ
(γikγjl + γilγjk − γijγkl). (27)
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Momenta constraints

▶ The time evolution of the remaining primary constraints can be written as

π̇i = {πi ,H} = 2
√

det(γ)D j(det(γ)−1/2πij) = 2Djπ
j
i ≡ Ci . (28)

▶ Imposing that this expression is weakly zero, it is obtained the momenta constraints.
▶ A boundary term 2

∫
d3xDi (π

ijβj/
√

detγ) has been ignored for this derivation.
▶ Time evolution of C0 and Ci does not give new constraints, therefore no more secondary

constraints appear and Dirac’s algorithm is finished.
▶ The total Hamiltonian is

H =

∫
d3x(αC0 + βiCi + λ0π0 + λiπi ) (29)

and it is a linear combination of constraints. The parameters of the combination are
Lagrange multipliers.
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The ADM algebra

▶ The expressions containing the information about a closed algebra are

{Ci (x), Cj(y)} = −Cj(x)∂y
i δ(x , y) + Ci (y)∂x

j δ(x , y),

{Ci (x), C0(y)} = C(x)∂x
i δ(x , y),

{C0(x), C0(y)} = γ ij(x)Ci (x)∂y
j δ(x , y)− γ ij(y)Ci (y)δxj (x , y).

(30)

▶ Schematically,

{momenta,momenta} = momenta
{momenta,Hamiltonian} = Hamiltonian
{Hamiltonian,Hamiltonian} = momenta.

(31)

▶ All Poisson brackets among Hamiltonian and momenta constraints give as a result a
combination of themselves. Since they weakly vanish on the constraint surface, the PB
also weakly vanishes, and they are preserved in time.
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Counting of degrees of freedom

The counting of degrees of freedom in GR goes as follows:
▶ The pairs of canonical variables (γij , π

ij), which are symmetric in the i − j indices, give
4 · (4 − 1)/2 = 6 degrees of freedom (since i , j = 1, .., 3).

▶ We remove 4 degrees of freedom with the 4 first class constraints Hµ

▶ It remains 4 · (4 − 3)/2 = 2 degrees of freedom of GR.
▶ These are the two degrees of freedom associated with the two possible polarizations of

gravitational waves.
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Hamilton’s equations for GR

Hamilton’s equations for GR are written as

ġij = {gij ,H} =
δH

δπij
, π̇ij = {πij ,H} = − δH

δgij
. (32)

From the Hamiltonian for GR previously found, it is obtained after some computations that

ġij = 2αg−1/2(πij −
1
2
gijπ) + βi|j + βj|i , (33)

π̇ij = −α
√
g((3)Rij −

1
2
g ij (3)R) +

1
2
αg−1/2g ij(πklπkl −

1
2
π2)

− 2αg−1/2(πikπk
j − 1

2
ππij) +

√
g(β|ij − g ijβ|k

|k)

+ (πijβk)|k − βi
|kπ

kj − βj
|kπ

ki ,

(34)

where |i is short hand for covariant derivative wrt i .
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General relativity in ADM formalism

The ADM set of equations can be casted in first-order derivatives system of equations of the
variables ai , dijk and Kij

∂0ai ≃ −α∂iQ, (35)

∂0dijk ≃ −α∂iKjk , (36)

∂0Kij ≃ −α∂kΛ
k
ij , (37)

where ai = ∂i lnα, dijk = 1
2∂iγjk , Q depending on derivatives of lapse, and Λk

ij depending on dijk
and ai .
It can be proved that this system is weakly hyperbolic, except for a very specific type of initial
data [Alcubierre (2008)] .
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Hyperbolicity

Consider a first order system of evolution equations of the form

∂tu +M i∂iu = s(u), (38)

where M i are n × n matrices, and s(u) a source vector (set to zero). M i are called
characteristic matrices. By building the principal symbol matrix P(ni ) = M ini (ni arbitrary unit
vector), then the system is
▶ strongly hyperbolic, if the principal symbol has real eigenvalues and a complete set of

eigenvectors for all ni , and
▶ weakly hyperbolic, if P has real eigenvalues for all ni , but does not have a complete set of

eigenvectors.
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General relativity in BSSNOK formalism

▶ The most widely used formulation in three-dimensional numerical codes based on the 3+1
decomposition, is the BSSNOK one (Nakamura, Oohara, Kojima (1987), Shibata,
Nakamura (1995), Baumgarte, Shapiro (1998)).

▶ It has proven to be very robust in practice in a large class of systems with strong and
dynamical gravitational fields, with and without matter.
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General relativity in BSSNOK formalism

▶ It is considered a conformal rescaling of the spatial metric

γ̃ij = ϕ−4γij , (39)

in such a way that the conformal metric γ̃ij has unit determinant ϕ4 = γ1/3.
▶ The extrinsic curvature is decomposed into its trace K and traceless part Aij , and

conformally transform it Aij = e4ϕÃij is postulated

Kij = e4ϕÃij +
1
3
γijK . (40)
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BSSNOK formalism

In terms of these variables the Hamiltonian constraint becomes

H = γ̄ ij D̄i D̄je
ϕ − eϕ

8
R̄ +

e5ϕ

8
Ãij Ã

ij − e5ϕ

12
K 2 = 0, (41)

while the momentum constraint becomes

D̄j(e
6ϕÃij)−

2
3
e6ϕD̄ iK = 0. (42)
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BSSNOK equations

The evolution equation for γij splits into two equations

∂tϕ = −1
6
αK + βi∂iϕ+

1
6
∂iβ

i , (43)

∂t γ̄ij = −2αÃij + βk∂k γ̄ij + γ̄ik∂jβ
k + γ̄kj∂iβ

k − 2
3
γ̄ij∂kβ

k . (44)
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BSSNOK equations

The evolution equation for Kij splits into the two equations

∂tK = −γ ijDjDiα+ α(Ãij Ã
ij +

1
3
K 2) + βi∂iK , (45)

∂tÃij =e−4ϕ(−DiDjα+ αRij)
TF + α(KÃij − 2Ãil Ã

l
j)

+ βk∂k Ãij + Ãik∂jβ
k + Ãkj∂iβ

k − 2
3
Ãij∂kβ

k .
(46)

In the last equation we have denoted the trace-free part of a tensor Tij as

TTF
ij = Tij − γijT

k
k /3.
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BSSNOK equations

We also split the Ricci tensor into Rij = R̄ij + Rϕ
ij . The piece R̄ij is expressed in terms of the

conformal connection functions
Γ̄i = γ̄jk Γ̄i jk = −∂j γ̄

ij , (47)

which yields

R̄ij = −1
2
γ̄ lm∂m∂l γ̄ij + γ̄k(i∂j)Γ̄

k + Γ̄k Γ̄(ij)k + γ̄ lm(2Γ̄kl(i Γ̄j)km + Γ̄kimΓ̄klj). (48)

Then, the Γ̄i are treated as independent functions that satisfy their own evolution equations,
which are

∂t Γ̄
i = −2Ãij∂jα+ 2α

(
Γ̄ijk Ã

kj − 2
3
γ̄ ij∂jK + 6Ãij∂jϕ

)
+ βj∂j Γ̄

i − Γ̄j∂jβ
i +

2
3
Γ̄i∂jβ

j +
1
3
γ̄ li∂l∂jβ

j + γ̄ lj∂j∂lβ
i .

(49)
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Overview of numerical relativity

▶ General Relativity remains largely untested, except in weak-field, slow-velocity regime.
Solutions, except for cases with high symmetry, have not been obtained for important
dynamical scenarios thought to occur in nature.

▶ With the advent of supercomputers, it is possible to start tackling these scenarios in
detail, that is, high-velocity, strong-field regimes.

▶ Among others, it comprehends gravitational collapse to black holes and neutron stars,
inspiral and coalescence of binary black holes and neutron stars, and generation and
propagation of gravitational waves.
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Overview of numerical relativity

▶ The equations arising in numerical relativity are multidimensional, nonlinear, coupled
partial differential equations in space and time. (like fluid dynamics,
magnetohydrodynamics, and aerodynamics)

▶ However, GR has unique additional complications. First is the choice of coordinates. Often
some choice of coordinates turns out to be bad, since singularities appear in the equations.

▶ Another complication comes from calculation of waveforms from astrophysical sources of
gravitational radiation. Extracting the waves from the background of a simulation requires
to prove the numerical spacetime in the far-field, which is usually very distant in space and
might require lots of computational resources.

María José Guzmán Hamiltonian formalism of GR and numerical relativity - Lecture 3 CTP-BUE 2022 30/30


	Basics of numerical relativity

