Warm Dark Matter Promises and Problems

Amr El-Zant Centre for Theoretical Physics BUE

(DM - Cairo)

WDM Structure Suppression in SCDM

• Early 1990's \rightarrow problems with SCDM

(too much structure and high vely at ~ 1 Mpc)

→Doddleson & Widrow propose massive 'sterile' neutrinos, produced through oscillations of SM neutrinos, as WDM

Idea appealing from current BSM phys. viewpoint

Problems with Contemporary 'Concordance' (~2000 AD..)

- At smaller scales ~ 10 kpc and less:
- \rightarrow Too dense central regions in galaxies
- Too many haloes than small galaxies... some 'too big to fail' and with 'wrong' dynamical properties

(consequence of above?)

A Host of Proposed Remedies

 'Heating' CDM via interaction with baryonic component during galaxy formation

 Heating central halo via 'heat transfer': (collisional SIDM)

(++broken scale invariance of primordial power spectrum; degeneracy and kpc scale quantum effects etc.)

Or already preheated 'warm' dark matter

WDM and Structure Suppression II

• For a thermal particle $m v^2 \sim KT \rightarrow \text{`faster} \rightarrow \text{streams further till MR equality'}$

- WIMPS many GeV's .vs. WDM few keV
 - \rightarrow At keV \rightarrow smallest galaxy scales washed out

++ 'Intuitively', expect smaller central density
→ cusped structures have divergent central phase
space density, along with divergent central density

In Practice...

- Even in HDM, or various cutoffs, in PS→ central density cusps for haloes that form (e.g., Moore et. al. 1999)
- 'Catch 22': larger initial velys to lead to significant central halo core → 'free stream away' the structure (galaxy does not form at all (Maccio et. Al. 2012)

 \rightarrow (standard) WDM structure formation seems to at most only ameliorates missing sat problem (problems too with 'too big to fail'; Schneider et. al. 2014)

(Top Hat) Collapse ~ Cold and Cold Collapse → Large Density Contrasts

- Many arguments for this; here's one:
- Centrally concentrated systems are robust because they wash out perturbations

El-Zant (2013)

Central cusps invariant under merging

'Standard' WDM Deficient

- Reduces small sats but constrained by Lyman-alpha AND
- \rightarrow this is arguably easiest to solve via feedback
- \rightarrow new small galaxies discovered all the time..
- ightarrow exacerbates early galaxy and BH formation

WDM is also hard to produce in right amounts;

Standard D-W mechanism ruled out by Lyman and X-ray bounds (Seljak et. Al. 2006; Viel et. al 2006; Abazajian & Koushiappas 2006; Viel et. al 2013) ++ GT bound

* Resonant production (from Lepton asymmetry, Shi-Fuller 99)? Controversy concerning 3.5 keV line... (mass dependent)

Also

- Thermal production
- Direct decay from scalar field

Thermal Production

keV WDM particles decouple while relativistic (E-density proportional to a^3

 \rightarrow commoving density constant

 \rightarrow no Boltzaman suppression ~ $e^{-m/kt}$

Overproduced by huge factors in the keV range

Thermal Production with Low Reheating

** Scalar field decays (also similar to end of inflation but lower T than standard models)

 \rightarrow Chemical equilibrium value never reached

Particle either never thermalizes, or does *after* reheating (not much room for simple entropy production scenario)

Models with no Oscillations and Suppressed Coupling (e.g., B-L)

- Model predicts keV neutrino with mass matrix such that mixing with SM particles evaded
- (circumvents X-ray bounds)

- Thermal production ~ crossection → suppressed
- WDM also produced by direct scalar field decay

Thermal and Non-Thermal Production in B-L

Conclusions

- WDM in principle promising from structure formation perspective
- Prime particle candidates also promising from BSM physics perspective (neutrino oscillations and various seesaw-type models explaining masses).
- However, large free steaming lengths do not straightforwardly solve most current small scale structure formation problems
- D-W and thermal scenarios severely constrained by X-ray and Lyman bounds
 - -> not straightforward to produce in right amounts