

Direct searches for low-mass new physics particles at BABAR

Hossain Ahmed Jazan University On behalf of the BABAR Collaboration

Direct searches for low-mass new physics particles at BABAR

✓ Search for a light Higgs resonance in radiative decays of the Y(1S) with a charm tag

PRD 91 071102 (2015)

✓ Search for a dark photon ($\rightarrow e^+e^-$, $\mu^+\mu^-$) in e^+e^- collisions at BABAR

PRL 113 201801 (2014)

✓ Search for Long-Lived Particles in e^+e^- Collisions

PRL 114 171801 (2015)

Hossain Ahmed

Topic 1

CP-odd Low-Mass Higgs

- An SM extensions, NMSSM, could solve the μ -problem of MSSM by adding one CP odd Higgs, one CP-even Higgs and one neutralino to MSSM content
- A light CP-odd Higgs A^0 with mass lower than $2m_b$ is not excluded by LEP constraints
- A CP-odd Higgs boson may be light enough to be produced at B-factories in bottonium decays γ

Topic 2

Dark Photon

• Success on SM urge more on BSM, e.g., Dark matter, Dark Energy etc.

• Dark matter might be a family of particles and forces—a so-called "dark sector" (e.g., Dark Force and Dark Photon)

• The Dark Photon A[/] may decays to the SM particles and may be light enough to observe in the low-energy e⁺e⁻ colliders.

APS/Alan Stonebraker

• Discoveries could bridge Astrophysics, Cosmology and Particle Physics.

Long-Lived Particles (LLP)

• Particles decaying in the detector far from interaction point are predicted by many extensions of the SM, e.g., split SUSY, hidden valley model etc.

• Many searches have been done already in different mass range, i.e., $m_{LLP} \ll GeV$, and $m_{LLP} \sim multi-GeV$ etc.

• Well suited search in the low-energy e^+e^- colliders, e.g., BABAR in $m_{LLP} \sim GeV$ mass range

• Long-Lived heavy neutrino search at BELLE (arXiv: 1301.1105)

Dec. 15 2015

P Schuster: arxiv 0910.1602

Topic 3

Analysis Modes

CP-Odd Low-Mass Higgs	Dark Photon	Long-Lived Particles
$Y(2S) \rightarrow \pi^{+}\pi^{-}Y(1S)$ $Y(1S) \rightarrow \gamma A^{0}, A^{0} \rightarrow c\bar{c}$	$e^+e^- \rightarrow \gamma A', A' \rightarrow l^+l^-$ $l = e, \mu$	$f = e^{+}e^{-}, \mu^{+}\mu^{-}, e^{\pm}\mu^{\pm}$ $, \pi^{+}\pi^{-}, K^{+}K^{-}, K^{\pm}\pi^{\pm}$
13.6 fb ⁻¹ Y(2S) on-resonance 1.4 fb ⁻¹ off-resonance (30MeV below of Y(2S))	514 fb ⁻¹	404 fb ⁻¹ Y(4S) on-resonance 44 fb ⁻¹ Y(4S) off-resonance (40 MeV below the on- resonance) 20 fb ⁻¹ Y(4S) for validation 28 fb ⁻¹ Y(3S) 14 fb ⁻¹ Y(2S)

BABAR Detector

Hossain Ahmed

CP-odd Low-Mass Higgs Analysis

		R. Dermisek and J. Gunion,
$\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow invisible$	arXiv:0808.0017 [hep-ex]	PRD 81, 075003 (2010)
$\Upsilon(3S) {\rightarrow} \gamma \: A^0, A^0 {\rightarrow} \tau^+ \tau^-$	PRL 103, 181801 (2009)	0.500
$\Upsilon(2S,3S) \twoheadrightarrow \gamma \: A^0, A^0 \twoheadrightarrow \mu^+ \mu^-$	PRL 103, 081801 (2009)	$\begin{array}{c c} 0.100 \\ \vdots \\ 0.050 \\ \uparrow \end{array} \begin{array}{c} 0.050 \\ \hline \end{array} \begin{array}{c} \tan\beta = 3 \\ \tan\beta = 2 \end{array}$
$\Upsilon(2S, 3S) \rightarrow \gamma A^0, A^0 \rightarrow hadrons$	PRL 107, 221801 (2011)	$\begin{array}{c} \sigma \\ \Omega \\ \Pi \\ \end{array} = 0.010 \begin{bmatrix} \tan\beta = 1.5 \\ \tan\beta = 1 \end{bmatrix} \\ \tan\beta = 1 \end{bmatrix}$
$\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \text{invisible}$	PRL 107, 021804 (2011)	0.005
$\Upsilon(1S) \to \gamma \: A^0, A^0 \to \mu^+ \mu^-$	PRD 87, 031102 (2013)	$0.001 \frac{1}{0} \frac{2}{2} \frac{4}{4} \frac{6}{6} \frac{8}{8} \frac{10}{12} \frac{12}{12}$
$\Upsilon(1S) \twoheadrightarrow \gamma \: A^0, A^0 \twoheadrightarrow \tau^+\tau^-$	PRD 88, 031102 (2013)	BF depend on the final
$\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow gg, ss$	PRD 88, 031701 (2013)	state particles and
$\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow cc$	PRD 91, 071102 (2015)	the model
		parameters, e.g., tanp

Analysis Strategy

- Dipion (two oppositely charged track) + 1photon + hadron system (D (tag) +X)
- The invariant mass, m_R for Y(2S) $\rightarrow \pi^+\pi^-$ Y(1S) is $m_R^2 = M_{Y(2S)}^2 + m_{\pi\pi}^2 - 2M_{Y(2S)}E_{\pi\pi}$
- EvtGen for signal event, Jetset for hadronization and GEANT4 for detector response
- Train 5 (charms) x 2 ($\pi\pi$ mass regions) BDT to discriminate signal from background using 24 variables (event shape, kinematics, vertex, D, photon, dipion)
- Reconstruct A⁰ mass using

$$m_X^2 = (P_{e^+e^-} - P_{\pi^+\pi^-} - P_{\gamma})^2$$

PRD 91 071102 (2015)

Analysis Strategy

- 9800 and 7400000 candidates satisfy the selection criteria in low and high mass regions
- A^0 mass regions: low (4.00 8.00) GeV/c² and high (7.50 - 9.25) GeV/c²
- Search for the A^0 resonance as a peak in the m_X distribution
- Signal m_X PDF modeled with the Crystal Ball function (Gaussian + Power Law)
- Background m_X PDF modeled with a 2^{nd} order polynomials

Exclude [8.95–9.1] GeV • avoid $\Upsilon(2S) \rightarrow \chi_b \rightarrow \Upsilon(1S)$ cascade

Analysis Strategy

- Reconstruction efficiencies ranges from 4.0% to 2.6%
- Local signal significance for lowmass region is 2.3σ
- Local signal significance for highmass region is 2.0σ
- Systematic uncertainty dominated by ccbar hadronization ~10%, also signal PDF shape, D mass PDF, dipion BF & PDF, MC stats, y efficiency, $N_{Y(2S)}$

Hossain Ahmed

PRD 91 071102 (2015)

11

• No significant signal

Hossain Ahmed

Dark Photon

• The dark photon (A[/]) under a new gauge group U(1)[/] -- introduces by theory [arXiv:1311.0029, PRD 80 015003 (2009)]

• Could be light (MeV-GeV mass range) and suitable for comparatively clean data from e⁺e⁻ collider, e.g. BABAR

• The excess of electrons and positrons, without a visible anti-proton excess, suggests dominantly leptonic decay or annihilation channels.

Dark Photon - Analysis

- Dark photon can be produced in $e^+e^- \rightarrow \gamma A', A' \rightarrow e^+e^-, \mu^+\mu^-$
- Studied full BABAR dataset 514fb⁻¹
- Measure the cross-section of

 $e^+e^- \rightarrow \gamma A', A' \rightarrow e^+e^-, \mu^+\mu^-$

from 20 MeV to 10.2 GeV

- Look for a narrow peak in invariant mass (use reduced mass for dimuon channel)
- PRD 113 201801 (2014)

Dark Photon- Analysis

Event Selection

- Two tracks (oppositely charged) + 1 photon
- MadGraph for signal event, BHWIDE + KK for backgrounds and GEANT4 for detector acceptance
- Particle Identification (e/mu)
- Neural network to reduce the converted photons background
- Signal selection efficiencies are 15% (35%) for the dielectron (dimuon) channel

Signal Yield @ $m_{A'}$

Electron channel

- dielectron invariant mass spectra
- mass steps -> Gaussian fit -> simulated *A*'
- mass resolution: 1.5 -8 MeV
- 5704 fits : 0.02 10.2 GeV

Muon channel

- reduced dimuon invariant mass spectra
- mass steps -> Gaussian fit -> simulated *A*'
- mass resolution: 1.5 -8 MeV
- 5370 fits : 0.212 10.2 GeV

Dark Photon- Analysis

Dark Photon- Analysis

Cross-section of $e^+e^- \rightarrow \gamma A', A' \rightarrow l^+l^- (l = e, \mu)$

- Scan excludes the known resonances (gray bands in next page)
- Cross-section from the fitted signal yields (sum of signal yields/ efficiency x luminosity)
- Statistical significance of each fit $S_s = \sqrt{2\log(L/L_0)}$, where L and L₀ are the likelihood values for fits with a free signal and the pure background hypothesis respectively
- Dark photon BF, luminosity, and limited MC statistics propagates as systematic uncertainties

Dark Photon-Signal Significance

Dark Photon- Results

• No significant signal

Upper limit on mixing strength at the level of $10^{-4} - 10^{-3}$ @ 90 % CL

Long-Lived Particles

• GeV-scale hidden sector states that may be long-lived, have much attention from recent astrophysical observations (e.g., AMS, PAMELA, CDMS etc.) and theories (e.g., PRD 79 115008 (2009), PRD 80 015003 (2009) etc.)

• At B factories LLP can be produced via vector (dark photon) and/or scalar (Higgs) portal R Essig, arXiv:0903.3941

LLP Analysis

$$e^{+}e^{-} \rightarrow L \rightarrow f$$

$$f = e^{+}e^{-}, \mu^{+}\mu^{-}, e^{\pm}\mu^{\pm}, \pi^{+}\pi^{-}, K^{+}K^{-}, K^{\pm}\pi^{\pm}$$

$$L = neutral$$

L = long-lived (displaced vertex)L = two-body decay (fit to the L candidate invariant mass)

Result Presentation

Model Independent (MI)

• no assumption on L production mechanism

• present limit on the product of $\sigma(e^+e^- \rightarrow LX) * BF(L \rightarrow f) * \varepsilon(f)$

Model Dependent (MD)

 $BF(B \rightarrow X_s L) * BF(L \rightarrow f)$ • X_s – hadron system with strangeness -1

LLP Analysis

MC production

→ Model Independent

- EvtGen, L spin zero
- 11 masses (0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 9.5 GeV/c²)
- for $m_0^{MC} \le 4GeV/c^2, e^+e^- \rightarrow B\overline{B}$ where one B decays to L+ N π (N =1,2,3) and other B decays generically
- At higher masses the production process is $Y(4S) \rightarrow L + N\pi$
- 20 cm transverse decay distance in both cases
- → Model Dependent
 - $B \rightarrow X_s L$
 - 7 masses (0.5, 1, 2, 3, 3.5, 4, and 4.5 GeV/c²)
 - 10% K, 25% K^{*}(892) and 65% K^{*}(1680)
 - BTOXSLL model used with EvtGen for dimuon spectrum production $(B \rightarrow X_s \mu^+ \mu^-)$
- → Background MC
 - EvtGen for $e^+e^- \rightarrow B\overline{B}$
 - KK2f for $e^+e^- \rightarrow \mu^+\mu^-, \tau^+\tau^-$
 - JETSET for $q\overline{q}$ and GEANT4 for detector acceptance

LLP Analysis

•Particle identification (PID) for oppositely charged track pairs

- $\frac{d_0}{\sigma_{d_0}} > 3$
- Two tracks are fit to a common vertex
- $\chi^2 < 10$ (1 dof)
- 1 < r < 50 cm, $\sigma_r < 0.2$ cm
- $\alpha < 0.01$ rad
- $\sigma_m < 0.2 \text{ GeV/c}^2$
- Remove K_s and Λ candidates (mass)

LLP Analysis - Signal Extraction

- Extract the signal yield for each final state as a function of L mass
- Performed unbinned extended maximum likelihood (UEML) fit
- Scan for a signal on top of background in 2MeV steps
- For each scan point the the statistical significance of signal is

$$S(m_0) = \pm \sqrt{2\log \frac{L(s+b)}{L(b)}}$$

- Two scan points have a significance > 3σ , in $\mu^+\mu^-$ mode
 - one consistent with γ conversion,
 - the other is not significant, when accounting for the look elsewhere effect.

Dec. 15 2015

LLP -- Result

Upper limit on both cases are set at 90 % CL for six 2-body final state

• BABAR has made a significant contribution on search for the lowmass new physics particles

-- Direct searches: unique sensitivity to low-mass new physics in high-statistics datasets

• No significant evidence for light new physics particle has been found and upper limits have been set

• Future B factories, e.g. BELLE-II will provide more statistics and improve the current limit (and/or new findings!)

JAZAN invites any regional and global collaboration in particle physics field!

THANK YOU!

Hossain Ahmed

R. Dermisek and J. Gunion PRD 81 075003(2010)

Highest-significance mass points

mµµ=0.212 GeVS=4.7γ-conversion,
mee < 10 MeV</td>13 signal eventsmee < 10 MeV</td>p-value=4x10-4 with look-elsewhere effect
in mµµ < 0.37 GeV</td>More than 50% of the candidates are in or
near material regions.All have 0.2 discrimination is poor.Consistent with γ-conversions

```
m<sub>µµ</sub>=1.24 GeV
S=4.2
10 signal events
p-value=8x10<sup>-3</sup> with look-elsewhere effect
in m<sub>µµ</sub> < 0.5 GeV</pre>
```


8/5/2015

Richard Kass

Achim Denig Institut für Kernphysik Johannes Gutenberg-Universität Mainz International Workshop on <u>e+e-</u> <u>Collisions from Phi</u> to <u>Psi</u> September 26, 2015 Hefei, China